本文整理汇总了Python中sklearn.datasets.base.Bunch.keys方法的典型用法代码示例。如果您正苦于以下问题:Python Bunch.keys方法的具体用法?Python Bunch.keys怎么用?Python Bunch.keys使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.datasets.base.Bunch
的用法示例。
在下文中一共展示了Bunch.keys方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_dataset
# 需要导入模块: from sklearn.datasets.base import Bunch [as 别名]
# 或者: from sklearn.datasets.base.Bunch import keys [as 别名]
#.........这里部分代码省略.........
rv = remove(rv, 'remove')
rv = remove(rv, 'boundary')
rv = remove(rv, 'SyncOn')
rv = remove(rv, 'Start')
rv = remove(rv, 'Userdefined')
rv = remove(rv, 'LowCorrelation')
rv = remove(rv, 'TSTART')
rv = remove(rv, 'TPEAK')
rv = remove(rv, 'TEND')
for i in range(len(rv)):
if rv[i] == 'R128':
rv[i] = '-99'
rv[i] = rv[i].lstrip('S')
rv[i] = int(rv[i])
# remove stimulus codes for responses
rv = remove_range(rv, 240)
for idx, i in enumerate(rv):
for idx2, i2 in enumerate(eegcodes):
if i == i2:
rv[idx] = binary[idx2]
for idx, i in enumerate(rv):
if i != -99:
rv[idx-1] = i
rv[idx] = 0
# remove last TR as it was apparently not recorded
rv[-1] = 0
rv = remove(rv, 0)
for idx, i in enumerate(rv):
if i == -99:
rv[idx] = 0
# until now the list with negative / neutral labels also contains zeros, which we will want to get rid of.
# To do this, we will replace the zeros with the code shown prior
# First two values will be deleted as well as first two TRs (after fmri_data_i gets assigned
for idx, z in enumerate(rv):
if idx <= 2 and z == 0:
rv[idx] = -77
if idx > 2 and z == 0:
rv[idx] = rv[idx-1]
for idx, z in enumerate(rv):
if idx <= 1 and z != -77:
print 'Warning, non-empty first two TRs were deleted.'
rv = remove(rv, -77)
unique = sorted(list(set(rv)))
print 'Unique values in RV', unique
t = open('/gablab/p/eegfmri/analysis/iaps/pilot%s/machine_learning/neg-neutr_attributes_run%s.txt' %(subject_id, r), 'w')
for i in range(len(rv)):
t.write("%s %s" %(rv[i], r))
t.write('\n')
t.close()
print 'Labels Length:', len(rv)
file_name = ['neg-neutr_attributes_run%s.txt' %(r), 'pilot%s_r0%s_bandpassed.nii.gz' %(subject_id, r)]
fil = _get_dataset(dataset_name, file_name, data_dir='/gablab/p/eegfmri/analysis/iaps/pilot%s' %(subject_id), folder=None)
ds_i = Bunch(func=fil[1], conditions_target=fil[0])
labels_i = np.loadtxt(ds_i.conditions_target, dtype=np.str)
bold_i = nb.load(ds_i.func)
fmri_data_i = np.copy(bold_i.get_data())
print 'Original fMRI data', fmri_data_i.shape
fmri_data_i = fmri_data_i[...,2:]
print fmri_data_i.shape
affine = bold_i.get_affine()
mean_img_i = np.mean(fmri_data_i, axis=3)
session_data = np.append(session_data, labels_i[:,1])
lab_data = np.append(lab_data, labels_i[:,0])
img_data = np.concatenate((img_data, fmri_data_i), axis=3)
print '__________________________________________________________________________________________________________'
if r == 3:
img_data = img_data[...,1:]
print 'fMRI image', img_data.shape
print 'Label Vector Length:', len(lab_data), 'Session Vector Length:', len(session_data)
ni_img = nb.Nifti1Image(img_data, affine=None, header=None)
nb.save(ni_img, '/gablab/p/eegfmri/analysis/iaps/pilot%s/machine_learning/all_runs.nii' %(subject_id))
f = open('/gablab/p/eegfmri/analysis/iaps/pilot%s/machine_learning/neg-neutr_attributes_all_runs.txt' %(subject_id), 'w')
for i in range(len(lab_data)):
f.write("%s %s" %(lab_data[i], session_data[i]))
f.write('\n')
f.close()
# set up concatenated dataset in nilearn format
file_names = ['neg-neutr_attributes_all_runs.txt', 'all_runs.nii']
files = _get_dataset(dataset_name, file_names, data_dir='/gablab/p/eegfmri/analysis/iaps/pilot%s' %(subject_id), folder=None)
ds = Bunch(func=files[1], conditions_target=files[0])
print ds.keys(), ds
labels = np.loadtxt(ds.conditions_target, dtype=np.str)
bold = nb.load(ds.func)
fmri_data = np.copy(bold.get_data())
print fmri_data.shape
affine = bold_i.get_affine() # just choose one
# Compute the mean EPI: we do the mean along the axis 3, which is time
mean_img = np.mean(fmri_data, axis=3)
return (ds, labels, bold, fmri_data, affine, mean_img) # later 'ds' will be sufficient