当前位置: 首页>>代码示例>>Python>>正文


Python Bunch.target_names方法代码示例

本文整理汇总了Python中sklearn.datasets.base.Bunch.target_names方法的典型用法代码示例。如果您正苦于以下问题:Python Bunch.target_names方法的具体用法?Python Bunch.target_names怎么用?Python Bunch.target_names使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.datasets.base.Bunch的用法示例。


在下文中一共展示了Bunch.target_names方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: shuffleData

# 需要导入模块: from sklearn.datasets.base import Bunch [as 别名]
# 或者: from sklearn.datasets.base.Bunch import target_names [as 别名]
 def shuffleData(self, res):
     shuffle(res)
     train = Bunch()
     train.data = map(lambda x:x[1], res)
     train.target = map(lambda x:x[0], res)
     train.target_names = self.names
     return train
开发者ID:anantauprety,项目名称:sentiment-analysis,代码行数:9,代码来源:sentiment_data.py

示例2: main

# 需要导入模块: from sklearn.datasets.base import Bunch [as 别名]
# 或者: from sklearn.datasets.base.Bunch import target_names [as 别名]
def main():
    print args
    print

    accuracies = defaultdict(lambda: [])

    ora_accu = defaultdict(lambda: [])

    oracle_accuracies =[]
    ora_cm = defaultdict(lambda: [])
    lbl_dit = defaultdict(lambda: [])

    aucs = defaultdict(lambda: [])

    x_axis = defaultdict(lambda: [])

    vct = TfidfVectorizer(encoding='ISO-8859-1', min_df=5, max_df=1.0, binary=False, ngram_range=(1, 1),
                          token_pattern='\\b\\w+\\b', tokenizer=StemTokenizer())

    print("Start loading ...")
    # data fields: data, bow, file_names, target_names, target

    ########## NEWS GROUPS ###############
    # easy to hard. see "Less is More" paper: http://axon.cs.byu.edu/~martinez/classes/678/Presentations/Clawson.pdf
    categories = [['alt.atheism', 'talk.religion.misc'],
                  ['comp.graphics', 'comp.windows.x'],
                  ['comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware'],
                  ['rec.sport.baseball', 'sci.crypt']]

    min_size = 10

    args.fixk = None

    data, vct = load_from_file(args.train, [categories[3]], args.fixk, min_size, vct, raw=True)

    print("Data %s" % args.train)
    print("Data size %s" % len(data.train.data))

    parameters = experiment_utils.parse_parameters_mat(args.cost_model)

    print "Cost Parameters %s" % parameters

    cost_model = experiment_utils.set_cost_model(args.cost_function, parameters=parameters)
    print "\nCost Model: %s" % cost_model.__class__.__name__

    ### SENTENCE TRANSFORMATION
    if args.train == "twitter":
        sent_detector = TwitterSentenceTokenizer()
    else:
        sent_detector = nltk.data.load('tokenizers/punkt/english.pickle')

    ## delete <br> to "." to recognize as end of sentence
    data.train.data = experiment_utils.clean_html(data.train.data)
    data.test.data = experiment_utils.clean_html(data.test.data)

    print("Train:{}, Test:{}, {}".format(len(data.train.data), len(data.test.data), data.test.target.shape[0]))
    ## Get the features of the sentence dataset

    ## create splits of data: pool, test, oracle, sentences
    expert_data = Bunch()
    if not args.fulloracle:
        train_test_data = Bunch()

        expert_data.sentence, train_test_data.pool = split_data(data.train)
        expert_data.oracle, train_test_data.test = split_data(data.test)

        data.train.data = train_test_data.pool.train.data
        data.train.target = train_test_data.pool.train.target

        data.test.data = train_test_data.test.train.data
        data.test.target = train_test_data.test.train.target

    ## convert document to matrix
    data.train.bow = vct.fit_transform(data.train.data)
    data.test.bow = vct.transform(data.test.data)

    #### EXPERT CLASSIFIER: ORACLE
    print("Training Oracle expert")
    exp_clf = experiment_utils.set_classifier(args.classifier, parameter=args.expert_penalty)

    if not args.fulloracle:
        print "Training expert documents:%s" % len(expert_data.oracle.train.data)
        labels, sent_train = experiment_utils.split_data_sentences(expert_data.oracle.train, sent_detector, vct, limit=args.limit)

        expert_data.oracle.train.data = sent_train
        expert_data.oracle.train.target = np.array(labels)
        expert_data.oracle.train.bow = vct.transform(expert_data.oracle.train.data)

        exp_clf.fit(expert_data.oracle.train.bow, expert_data.oracle.train.target)
    else:
        # expert_data.data = np.concatenate((data.train.data, data.test.data))
        # expert_data.target = np.concatenate((data.train.target, data.test.target))
        expert_data.data =data.train.data
        expert_data.target = data.train.target
        expert_data.target_names = data.train.target_names
        labels, sent_train = experiment_utils.split_data_sentences(expert_data, sent_detector, vct, limit=args.limit)
        expert_data.bow = vct.transform(sent_train)
        expert_data.target = labels
        expert_data.data = sent_train
        exp_clf.fit(expert_data.bow, expert_data.target)
#.........这里部分代码省略.........
开发者ID:mramire8,项目名称:active,代码行数:103,代码来源:sent_unc.py

示例3: load_mask_images

# 需要导入模块: from sklearn.datasets.base import Bunch [as 别名]
# 或者: from sklearn.datasets.base.Bunch import target_names [as 别名]
import numpy as np
from skimage import io
from sklearn.datasets.base import Bunch

from dip.load_data import load_image_files, load_mask_images
from dip.mask import bounding_rect_of_mask


datasets = load_mask_images()

data = []
for f, mask in zip(
        datasets.filenames,
        load_image_files(datasets.filenames),
        ):
    # rect: (min_x, max_x, min_y, max_x)
    rect = bounding_rect_of_mask(mask, negative=True)
    data.append(list(rect))
    print('{0}: {1}'.format(f, rect))

bunch = Bunch(name='mask rects')
bunch.data = np.array(data)
bunch.filenames = datasets.filenames
bunch.target = datasets.target
bunch.target_names = datasets.target_names
bunch.description = 'mask rects: (min_x, min_y, max_x, max_y)'

with gzip.open('rects.pkl.gz', 'wb') as f:
    pickle.dump(bunch, f)
开发者ID:wkentaro,项目名称:d-image-pipeline,代码行数:31,代码来源:mask_to_rect.py


注:本文中的sklearn.datasets.base.Bunch.target_names方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。