本文整理汇总了Python中sklearn.datasets.base.Bunch.offset方法的典型用法代码示例。如果您正苦于以下问题:Python Bunch.offset方法的具体用法?Python Bunch.offset怎么用?Python Bunch.offset使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sklearn.datasets.base.Bunch
的用法示例。
在下文中一共展示了Bunch.offset方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from sklearn.datasets.base import Bunch [as 别名]
# 或者: from sklearn.datasets.base.Bunch import offset [as 别名]
#.........这里部分代码省略.........
print ("Anytime active learning experiment - use objective function to pick data")
t0 = time.time()
tac = []
tau = []
### experiment starts
for t in range(args.trials):
trial_accu = []
trial_aucs = []
print "*" * 60
print "Trial: %s" % t
student = get_student(clf, cost_model, sent_clf, sent_detector, vct)
student.human_mode = args.expert == 'human'
print "\nStudent: %s " % student
train_indices = []
neutral_data = [] # save the xik vectors
train_x = []
train_y = []
neu_x = [] # data to train the classifier
neu_y = np.array([])
pool = Bunch()
pool.data = data.train.bow.tocsr() # full words, for training
pool.text = data.train.data
pool.target = data.train.target
pool.predicted = []
pool.remaining = range(pool.data.shape[0]) # indices of the pool
rand = RandomState(t * 1234)
rand.shuffle(pool.remaining)
pool.offset = 0
bootstrapped = False
current_cost = 0
iteration = 0
query_index = None
query_size = None
oracle_answers = 0
calibrated=args.calibrate
while 0 < student.budget and len(pool.remaining) > pool.offset and iteration <= args.maxiter:
util = []
if not bootstrapped:
query_index = pool.remaining[:bootstrap_size]
bootstrapped = True
query = pool.data[query_index]
print
else:
# if not calibrated:
# chosen = student.pick_next(pool=pool, step_size=step_size)
# else:
# chosen = student.pick_next_cal(pool=pool, step_size=step_size)
chosen = student.pick_next(pool=pool, step_size=step_size)
query_index = [x for x, y in chosen] # document id of chosen instances
query = [y for x, y in chosen] # sentence of the document
query_size = [1] * len(query_index)
ground_truth = pool.target[query_index]