本文整理汇总了Python中shogun.Features.StringWordFeatures.obtain_from_char方法的典型用法代码示例。如果您正苦于以下问题:Python StringWordFeatures.obtain_from_char方法的具体用法?Python StringWordFeatures.obtain_from_char怎么用?Python StringWordFeatures.obtain_from_char使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类shogun.Features.StringWordFeatures
的用法示例。
在下文中一共展示了StringWordFeatures.obtain_from_char方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: sort_word_string
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def sort_word_string ():
print 'CommWordString'
from shogun.Kernel import CommWordStringKernel
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
from shogun.PreProc import SortWordString
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preproc(preproc)
feats_train.apply_preproc()
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preproc(preproc)
feats_test.apply_preproc()
use_sign=False
kernel=CommWordStringKernel(feats_train, feats_train, use_sign)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
示例2: linear_hmm
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def linear_hmm ():
print 'LinearHMM'
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Distribution import LinearHMM
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_dna)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
hmm=LinearHMM(feats)
hmm.train()
hmm.get_transition_probs()
num_examples=feats.get_num_vectors()
num_param=hmm.get_num_model_parameters()
for i in xrange(num_examples):
for j in xrange(num_param):
hmm.get_log_derivative(j, i)
hmm.get_log_likelihood()
hmm.get_log_likelihood_sample()
示例3: kernel_weighted_comm_word_string_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def kernel_weighted_comm_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,order=3,gap=0,reverse=True ):
from shogun.Kernel import WeightedCommWordStringKernel
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Preprocessor import SortWordString
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preprocessor(preproc)
feats_train.apply_preprocessor()
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preprocessor(preproc)
feats_test.apply_preprocessor()
use_sign=False
kernel=WeightedCommWordStringKernel(feats_train, feats_train, use_sign)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例4: preproc_sortwordstring_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def preproc_sortwordstring_modular (fm_train_dna=traindna,fm_test_dna=testdna,order=3,gap=0,reverse=False,use_sign=False):
from shogun.Kernel import CommWordStringKernel
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
from shogun.PreProc import SortWordString
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preproc(preproc)
feats_train.apply_preproc()
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preproc(preproc)
feats_test.apply_preproc()
kernel=CommWordStringKernel(feats_train, feats_train, use_sign)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例5: kernel_histogram_word_string_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def kernel_histogram_word_string_modular(
fm_train_dna=traindat, fm_test_dna=testdat, label_train_dna=label_traindat, order=3, gap=0, reverse=False
):
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
from shogun.Kernel import HistogramWordStringKernel
from shogun.Classifier import PluginEstimate # , MSG_DEBUG
reverse = reverse
charfeat = StringCharFeatures(DNA)
# charfeat.io.set_loglevel(MSG_DEBUG)
charfeat.set_features(fm_train_dna)
feats_train = StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
charfeat = StringCharFeatures(DNA)
charfeat.set_features(fm_test_dna)
feats_test = StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)
pie = PluginEstimate()
labels = Labels(label_train_dna)
pie.set_labels(labels)
pie.set_features(feats_train)
pie.train()
kernel = HistogramWordStringKernel(feats_train, feats_train, pie)
km_train = kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
pie.set_features(feats_test)
pie.classify().get_labels()
km_test = kernel.get_kernel_matrix()
return km_train, km_test, kernel
示例6: init_sensor
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def init_sensor(self, kernel, svs):
f = StringCharFeatures(svs, DNA)
kname = kernel['name']
if kname == 'spectrum':
wf = StringWordFeatures(f.get_alphabet())
wf.obtain_from_char(f, kernel['order'] - 1, kernel['order'], 0, False)
pre = SortWordString()
pre.init(wf)
wf.add_preprocessor(pre)
wf.apply_preprocessor()
f = wf
k = CommWordStringKernel(0, False)
k.set_use_dict_diagonal_optimization(kernel['order'] < 8)
self.preproc = pre
elif kname == 'wdshift':
k = WeightedDegreePositionStringKernel(0, kernel['order'])
k.set_normalizer(IdentityKernelNormalizer())
k.set_shifts(kernel['shift'] *
numpy.ones(f.get_max_vector_length(), dtype=numpy.int32))
k.set_position_weights(1.0 / f.get_max_vector_length() *
numpy.ones(f.get_max_vector_length(), dtype=numpy.float64))
else:
raise "Currently, only wdshift and spectrum kernels supported"
self.kernel = k
self.train_features = f
return (self.kernel, self.train_features)
示例7: kernel_salzberg_word_string_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def kernel_salzberg_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,
order=3,gap=0,reverse=False):
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
from shogun.Kernel import SalzbergWordStringKernel
from shogun.Classifier import PluginEstimate
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
pie=PluginEstimate()
labels=Labels(label_train_dna)
pie.set_labels(labels)
pie.set_features(feats_train)
pie.train()
kernel=SalzbergWordStringKernel(feats_train, feats_train, pie, labels)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
pie.set_features(feats_test)
pie.apply().get_labels()
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例8: histogram
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def histogram ():
print 'Histogram'
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Distribution import Histogram
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_dna)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
histo=Histogram(feats)
histo.train()
histo.get_histogram()
num_examples=feats.get_num_vectors()
num_param=histo.get_num_model_parameters()
#for i in xrange(num_examples):
# for j in xrange(num_param):
# histo.get_log_derivative(j, i)
histo.get_log_likelihood()
histo.get_log_likelihood_sample()
示例9: distribution_hmm_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def distribution_hmm_modular(fm_cube, N, M, pseudo, order, gap, reverse, num_examples):
from shogun.Features import StringWordFeatures, StringCharFeatures, CUBE
from shogun.Distribution import HMM, BW_NORMAL
charfeat=StringCharFeatures(CUBE)
charfeat.set_features(fm_cube)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
hmm=HMM(feats, N, M, pseudo)
hmm.train()
hmm.baum_welch_viterbi_train(BW_NORMAL)
num_examples=feats.get_num_vectors()
num_param=hmm.get_num_model_parameters()
for i in xrange(num_examples):
for j in xrange(num_param):
hmm.get_log_derivative(j, i)
best_path=0
best_path_state=0
for i in xrange(num_examples):
best_path+=hmm.best_path(i)
for j in xrange(N):
best_path_state+=hmm.get_best_path_state(i, j)
lik_example = hmm.get_log_likelihood()
lik_sample = hmm.get_log_likelihood_sample()
return lik_example, lik_sample, hmm
示例10: match_word_string
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def match_word_string ():
print 'MatchWordString'
from shogun.Kernel import MatchWordStringKernel, AvgDiagKernelNormalizer
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
degree=3
scale=1.4
size_cache=10
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(DNA)
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(DNA)
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
kernel=MatchWordStringKernel(size_cache, degree)
kernel.set_normalizer(AvgDiagKernelNormalizer(scale))
kernel.init(feats_train, feats_train)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
示例11: plugin_estimate_salzberg
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def plugin_estimate_salzberg ():
print 'PluginEstimate w/ SalzbergWord'
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
from shogun.Kernel import SalzbergWordStringKernel
from shogun.Classifier import PluginEstimate
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
pie=PluginEstimate()
labels=Labels(label_train_dna)
pie.set_labels(labels)
pie.set_features(feats_train)
pie.train()
kernel=SalzbergWordStringKernel(feats_train, feats_test, pie, labels)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
pie.set_features(feats_test)
pie.classify().get_labels()
km_test=kernel.get_kernel_matrix()
示例12: distribution_linearhmm_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def distribution_linearhmm_modular (fm_dna=traindna,order=3,gap=0,reverse=False):
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Distribution import LinearHMM
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_dna)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
hmm=LinearHMM(feats)
hmm.train()
hmm.get_transition_probs()
num_examples=feats.get_num_vectors()
num_param=hmm.get_num_model_parameters()
for i in range(num_examples):
for j in range(num_param):
hmm.get_log_derivative(j, i)
out_likelihood = hmm.get_log_likelihood()
out_sample = hmm.get_log_likelihood_sample()
return hmm,out_likelihood ,out_sample
示例13: create_hashed_features_spectrum
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def create_hashed_features_spectrum(param, data):
"""
creates hashed dot features for the spectrum kernel
"""
# extract parameters
order = param["degree_spectrum"]
# fixed parameters
gap = 0
reverse = True
normalize = True
# create features
feats_char = StringCharFeatures(data, DNA)
feats_word = StringWordFeatures(feats_char.get_alphabet())
feats_word.obtain_from_char(feats_char, order-1, order, gap, reverse)
# create preproc
preproc = SortWordString()
preproc.init(feats_word)
feats_word.add_preproc(preproc)
feats_word.apply_preproc()
# finish
feats = ImplicitWeightedSpecFeatures(feats_word, normalize)
return feats
示例14: manhattan_word_distance
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def manhattan_word_distance ():
print 'ManhattanWordDistance'
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
from shogun.PreProc import SortWordString
from shogun.Distance import ManhattanWordDistance
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_train_dna)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preproc(preproc)
feats_train.apply_preproc()
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_test_dna)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preproc(preproc)
feats_test.apply_preproc()
distance=ManhattanWordDistance(feats_train, feats_train)
dm_train=distance.get_distance_matrix()
distance.init(feats_train, feats_test)
dm_test=distance.get_distance_matrix()
示例15: distance_hammingword_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def distance_hammingword_modular (fm_train_dna=traindna,fm_test_dna=testdna,
fm_test_real=testdat,order=3,gap=0,reverse=False,use_sign=False):
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
from shogun.Preprocessor import SortWordString
from shogun.Distance import HammingWordDistance
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_train_dna)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preprocessor(preproc)
feats_train.apply_preprocessor()
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_test_dna)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preprocessor(preproc)
feats_test.apply_preprocessor()
distance=HammingWordDistance(feats_train, feats_train, use_sign)
dm_train=distance.get_distance_matrix()
distance.init(feats_train, feats_test)
dm_test=distance.get_distance_matrix()
return distance,dm_train,dm_test