当前位置: 首页>>代码示例>>Python>>正文


Python StringWordFeatures.obtain_from_char方法代码示例

本文整理汇总了Python中shogun.Features.StringWordFeatures.obtain_from_char方法的典型用法代码示例。如果您正苦于以下问题:Python StringWordFeatures.obtain_from_char方法的具体用法?Python StringWordFeatures.obtain_from_char怎么用?Python StringWordFeatures.obtain_from_char使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在shogun.Features.StringWordFeatures的用法示例。


在下文中一共展示了StringWordFeatures.obtain_from_char方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: sort_word_string

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def sort_word_string ():
	print 'CommWordString'

	from shogun.Kernel import CommWordStringKernel
	from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
	from shogun.PreProc import SortWordString

	order=3
	gap=0
	reverse=False

	charfeat=StringCharFeatures(fm_train_dna, DNA)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preproc(preproc)
	feats_train.apply_preproc()

	charfeat=StringCharFeatures(fm_test_dna, DNA)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preproc(preproc)
	feats_test.apply_preproc()

	use_sign=False

	kernel=CommWordStringKernel(feats_train, feats_train, use_sign)

	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:34,代码来源:preproc_sortwordstring_modular.py

示例2: linear_hmm

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def linear_hmm ():
	print 'LinearHMM'

	from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
	from shogun.Distribution import LinearHMM

	order=3
	gap=0
	reverse=False

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_dna)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	hmm=LinearHMM(feats)
	hmm.train()

	hmm.get_transition_probs()

	num_examples=feats.get_num_vectors()
	num_param=hmm.get_num_model_parameters()
	for i in xrange(num_examples):
		for j in xrange(num_param):
			hmm.get_log_derivative(j, i)

	hmm.get_log_likelihood()
	hmm.get_log_likelihood_sample()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:30,代码来源:distribution_linear_hmm_modular.py

示例3: kernel_weighted_comm_word_string_modular

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def kernel_weighted_comm_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,order=3,gap=0,reverse=True ):
	from shogun.Kernel import WeightedCommWordStringKernel
	from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
	from shogun.Preprocessor import SortWordString

	charfeat=StringCharFeatures(fm_train_dna, DNA)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()

	charfeat=StringCharFeatures(fm_test_dna, DNA)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()

	use_sign=False
	kernel=WeightedCommWordStringKernel(feats_train, feats_train, use_sign)
	km_train=kernel.get_kernel_matrix()

	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:28,代码来源:kernel_weighted_comm_word_string_modular.py

示例4: preproc_sortwordstring_modular

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def preproc_sortwordstring_modular (fm_train_dna=traindna,fm_test_dna=testdna,order=3,gap=0,reverse=False,use_sign=False):

	from shogun.Kernel import CommWordStringKernel
	from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
	from shogun.PreProc import SortWordString

	charfeat=StringCharFeatures(fm_train_dna, DNA)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preproc(preproc)
	feats_train.apply_preproc()

	charfeat=StringCharFeatures(fm_test_dna, DNA)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preproc(preproc)
	feats_test.apply_preproc()

	kernel=CommWordStringKernel(feats_train, feats_train, use_sign)

	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()

	return km_train,km_test,kernel
开发者ID:AsherBond,项目名称:shogun,代码行数:29,代码来源:preproc_sortwordstring_modular.py

示例5: kernel_histogram_word_string_modular

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def kernel_histogram_word_string_modular(
    fm_train_dna=traindat, fm_test_dna=testdat, label_train_dna=label_traindat, order=3, gap=0, reverse=False
):

    from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
    from shogun.Kernel import HistogramWordStringKernel
    from shogun.Classifier import PluginEstimate  # , MSG_DEBUG

    reverse = reverse
    charfeat = StringCharFeatures(DNA)
    # charfeat.io.set_loglevel(MSG_DEBUG)
    charfeat.set_features(fm_train_dna)
    feats_train = StringWordFeatures(charfeat.get_alphabet())
    feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    charfeat = StringCharFeatures(DNA)
    charfeat.set_features(fm_test_dna)
    feats_test = StringWordFeatures(charfeat.get_alphabet())
    feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)

    pie = PluginEstimate()
    labels = Labels(label_train_dna)
    pie.set_labels(labels)
    pie.set_features(feats_train)
    pie.train()

    kernel = HistogramWordStringKernel(feats_train, feats_train, pie)
    km_train = kernel.get_kernel_matrix()
    kernel.init(feats_train, feats_test)
    pie.set_features(feats_test)
    pie.classify().get_labels()
    km_test = kernel.get_kernel_matrix()
    return km_train, km_test, kernel
开发者ID:haipengwang,项目名称:shogun,代码行数:35,代码来源:kernel_histogram_word_string_modular.py

示例6: init_sensor

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
    def init_sensor(self, kernel, svs):
        f = StringCharFeatures(svs, DNA)

        kname = kernel['name']
        if  kname == 'spectrum':
            wf = StringWordFeatures(f.get_alphabet())
            wf.obtain_from_char(f, kernel['order'] - 1, kernel['order'], 0, False)

            pre = SortWordString()
            pre.init(wf)
            wf.add_preprocessor(pre)
            wf.apply_preprocessor()
            f = wf

            k = CommWordStringKernel(0, False)
            k.set_use_dict_diagonal_optimization(kernel['order'] < 8)
            self.preproc = pre

        elif kname == 'wdshift':
                k = WeightedDegreePositionStringKernel(0, kernel['order'])
                k.set_normalizer(IdentityKernelNormalizer())
                k.set_shifts(kernel['shift'] *
                        numpy.ones(f.get_max_vector_length(), dtype=numpy.int32))
                k.set_position_weights(1.0 / f.get_max_vector_length() *
                        numpy.ones(f.get_max_vector_length(), dtype=numpy.float64))
        else:
            raise "Currently, only wdshift and spectrum kernels supported"

        self.kernel = k
        self.train_features = f

        return (self.kernel, self.train_features)
开发者ID:Anshul-Bansal,项目名称:gsoc,代码行数:34,代码来源:signal_sensor.py

示例7: kernel_salzberg_word_string_modular

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def kernel_salzberg_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,
order=3,gap=0,reverse=False):
	from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
	from shogun.Kernel import SalzbergWordStringKernel
	from shogun.Classifier import PluginEstimate

	charfeat=StringCharFeatures(fm_train_dna, DNA)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	charfeat=StringCharFeatures(fm_test_dna, DNA)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	pie=PluginEstimate()
	labels=Labels(label_train_dna)
	pie.set_labels(labels)
	pie.set_features(feats_train)
	pie.train()

	kernel=SalzbergWordStringKernel(feats_train, feats_train, pie, labels)
	km_train=kernel.get_kernel_matrix()

	kernel.init(feats_train, feats_test)
	pie.set_features(feats_test)
	pie.apply().get_labels()
	km_test=kernel.get_kernel_matrix()
	return km_train,km_test,kernel
开发者ID:alesis,项目名称:shogun,代码行数:30,代码来源:kernel_salzberg_word_string_modular.py

示例8: histogram

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def histogram ():
	print 'Histogram'

	from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
	from shogun.Distribution import Histogram

	order=3
	gap=0
	reverse=False

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_dna)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	histo=Histogram(feats)
	histo.train()

	histo.get_histogram()

	num_examples=feats.get_num_vectors()
	num_param=histo.get_num_model_parameters()
	#for i in xrange(num_examples):
	#	for j in xrange(num_param):
	#		histo.get_log_derivative(j, i)

	histo.get_log_likelihood()
	histo.get_log_likelihood_sample()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:30,代码来源:distribution_histogram_modular.py

示例9: distribution_hmm_modular

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def distribution_hmm_modular(fm_cube, N, M, pseudo, order, gap, reverse, num_examples):
	from shogun.Features import StringWordFeatures, StringCharFeatures, CUBE
	from shogun.Distribution import HMM, BW_NORMAL

	charfeat=StringCharFeatures(CUBE)
	charfeat.set_features(fm_cube)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	hmm=HMM(feats, N, M, pseudo)
	hmm.train()
	hmm.baum_welch_viterbi_train(BW_NORMAL)

	num_examples=feats.get_num_vectors()
	num_param=hmm.get_num_model_parameters()
	for i in xrange(num_examples):
		for j in xrange(num_param):
			hmm.get_log_derivative(j, i)

	best_path=0
	best_path_state=0
	for i in xrange(num_examples):
		best_path+=hmm.best_path(i)
		for j in xrange(N):
			best_path_state+=hmm.get_best_path_state(i, j)

	lik_example = hmm.get_log_likelihood()
	lik_sample = hmm.get_log_likelihood_sample()

	return lik_example, lik_sample, hmm
开发者ID:AsherBond,项目名称:shogun,代码行数:32,代码来源:distribution_hmm_modular.py

示例10: match_word_string

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def match_word_string ():
	print 'MatchWordString'
	from shogun.Kernel import MatchWordStringKernel, AvgDiagKernelNormalizer
	from shogun.Features import StringWordFeatures, StringCharFeatures, DNA

	degree=3
	scale=1.4
	size_cache=10
	order=3
	gap=0
	reverse=False

	charfeat=StringCharFeatures(fm_train_dna, DNA)
	feats_train=StringWordFeatures(DNA)
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	charfeat=StringCharFeatures(fm_test_dna, DNA)
	feats_test=StringWordFeatures(DNA)
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	kernel=MatchWordStringKernel(size_cache, degree)
	kernel.set_normalizer(AvgDiagKernelNormalizer(scale))
	kernel.init(feats_train, feats_train)

	km_train=kernel.get_kernel_matrix()
	kernel.init(feats_train, feats_test)
	km_test=kernel.get_kernel_matrix()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:29,代码来源:kernel_match_word_string_modular.py

示例11: plugin_estimate_salzberg

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def plugin_estimate_salzberg ():
	print 'PluginEstimate w/ SalzbergWord'

	from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
	from shogun.Kernel import SalzbergWordStringKernel
	from shogun.Classifier import PluginEstimate

	order=3
	gap=0
	reverse=False

	charfeat=StringCharFeatures(fm_train_dna, DNA)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)

	charfeat=StringCharFeatures(fm_test_dna, DNA)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)

	pie=PluginEstimate()
	labels=Labels(label_train_dna)
	pie.set_labels(labels)
	pie.set_features(feats_train)
	pie.train()

	kernel=SalzbergWordStringKernel(feats_train, feats_test, pie, labels)
	km_train=kernel.get_kernel_matrix()

	kernel.init(feats_train, feats_test)
	pie.set_features(feats_test)
	pie.classify().get_labels()
	km_test=kernel.get_kernel_matrix()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:34,代码来源:kernel_salzberg_word_string_modular.py

示例12: distribution_linearhmm_modular

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def distribution_linearhmm_modular (fm_dna=traindna,order=3,gap=0,reverse=False):

	from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
	from shogun.Distribution import LinearHMM

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_dna)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	hmm=LinearHMM(feats)
	hmm.train()

	hmm.get_transition_probs()

	num_examples=feats.get_num_vectors()
	num_param=hmm.get_num_model_parameters()
	for i in range(num_examples):
		for j in range(num_param):
			hmm.get_log_derivative(j, i)

	out_likelihood = hmm.get_log_likelihood()
	out_sample = hmm.get_log_likelihood_sample()

	return hmm,out_likelihood ,out_sample
开发者ID:coodoing,项目名称:shogun,代码行数:27,代码来源:distribution_linearhmm_modular.py

示例13: create_hashed_features_spectrum

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def create_hashed_features_spectrum(param, data):
    """
    creates hashed dot features for the spectrum kernel
    """

    # extract parameters
    order = param["degree_spectrum"]

    # fixed parameters
    gap = 0
    reverse = True 
    normalize = True

    # create features
    feats_char = StringCharFeatures(data, DNA)
    feats_word = StringWordFeatures(feats_char.get_alphabet())
    feats_word.obtain_from_char(feats_char, order-1, order, gap, reverse)

    # create preproc
    preproc = SortWordString()
    preproc.init(feats_word)
    feats_word.add_preproc(preproc)
    feats_word.apply_preproc()

    # finish 
    feats = ImplicitWeightedSpecFeatures(feats_word, normalize)

    return feats
开发者ID:cwidmer,项目名称:multitask,代码行数:30,代码来源:shogun_factory_new.py

示例14: manhattan_word_distance

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def manhattan_word_distance ():
	print 'ManhattanWordDistance'

	from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
	from shogun.PreProc import SortWordString
	from shogun.Distance import ManhattanWordDistance

	order=3
	gap=0
	reverse=False

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_train_dna)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preproc(preproc)
	feats_train.apply_preproc()

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_test_dna)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preproc(preproc)
	feats_test.apply_preproc()

	distance=ManhattanWordDistance(feats_train, feats_train)

	dm_train=distance.get_distance_matrix()
	distance.init(feats_train, feats_test)
	dm_test=distance.get_distance_matrix()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:34,代码来源:distance_manhattenword_modular.py

示例15: distance_hammingword_modular

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import obtain_from_char [as 别名]
def distance_hammingword_modular (fm_train_dna=traindna,fm_test_dna=testdna,
		fm_test_real=testdat,order=3,gap=0,reverse=False,use_sign=False):

	from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
	from shogun.Preprocessor import SortWordString
	from shogun.Distance import HammingWordDistance

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_train_dna)
	feats_train=StringWordFeatures(charfeat.get_alphabet())
	feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
	preproc=SortWordString()
	preproc.init(feats_train)
	feats_train.add_preprocessor(preproc)
	feats_train.apply_preprocessor()

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_test_dna)
	feats_test=StringWordFeatures(charfeat.get_alphabet())
	feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
	feats_test.add_preprocessor(preproc)
	feats_test.apply_preprocessor()

	distance=HammingWordDistance(feats_train, feats_train, use_sign)

	dm_train=distance.get_distance_matrix()
	distance.init(feats_train, feats_test)
	dm_test=distance.get_distance_matrix()
	return distance,dm_train,dm_test
开发者ID:behollis,项目名称:muViewBranch,代码行数:31,代码来源:distance_hammingword_modular.py


注:本文中的shogun.Features.StringWordFeatures.obtain_from_char方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。