当前位置: 首页>>代码示例>>Python>>正文


Python StringWordFeatures.get_num_vectors方法代码示例

本文整理汇总了Python中shogun.Features.StringWordFeatures.get_num_vectors方法的典型用法代码示例。如果您正苦于以下问题:Python StringWordFeatures.get_num_vectors方法的具体用法?Python StringWordFeatures.get_num_vectors怎么用?Python StringWordFeatures.get_num_vectors使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在shogun.Features.StringWordFeatures的用法示例。


在下文中一共展示了StringWordFeatures.get_num_vectors方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: distribution_hmm_modular

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import get_num_vectors [as 别名]
def distribution_hmm_modular(fm_cube, N, M, pseudo, order, gap, reverse, num_examples):
	from shogun.Features import StringWordFeatures, StringCharFeatures, CUBE
	from shogun.Distribution import HMM, BW_NORMAL

	charfeat=StringCharFeatures(CUBE)
	charfeat.set_features(fm_cube)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	hmm=HMM(feats, N, M, pseudo)
	hmm.train()
	hmm.baum_welch_viterbi_train(BW_NORMAL)

	num_examples=feats.get_num_vectors()
	num_param=hmm.get_num_model_parameters()
	for i in xrange(num_examples):
		for j in xrange(num_param):
			hmm.get_log_derivative(j, i)

	best_path=0
	best_path_state=0
	for i in xrange(num_examples):
		best_path+=hmm.best_path(i)
		for j in xrange(N):
			best_path_state+=hmm.get_best_path_state(i, j)

	lik_example = hmm.get_log_likelihood()
	lik_sample = hmm.get_log_likelihood_sample()

	return lik_example, lik_sample, hmm
开发者ID:AsherBond,项目名称:shogun,代码行数:32,代码来源:distribution_hmm_modular.py

示例2: distribution_linearhmm_modular

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import get_num_vectors [as 别名]
def distribution_linearhmm_modular (fm_dna=traindna,order=3,gap=0,reverse=False):

	from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
	from shogun.Distribution import LinearHMM

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_dna)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	hmm=LinearHMM(feats)
	hmm.train()

	hmm.get_transition_probs()

	num_examples=feats.get_num_vectors()
	num_param=hmm.get_num_model_parameters()
	for i in range(num_examples):
		for j in range(num_param):
			hmm.get_log_derivative(j, i)

	out_likelihood = hmm.get_log_likelihood()
	out_sample = hmm.get_log_likelihood_sample()

	return hmm,out_likelihood ,out_sample
开发者ID:coodoing,项目名称:shogun,代码行数:27,代码来源:distribution_linearhmm_modular.py

示例3: histogram

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import get_num_vectors [as 别名]
def histogram ():
	print 'Histogram'

	from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
	from shogun.Distribution import Histogram

	order=3
	gap=0
	reverse=False

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_dna)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	histo=Histogram(feats)
	histo.train()

	histo.get_histogram()

	num_examples=feats.get_num_vectors()
	num_param=histo.get_num_model_parameters()
	#for i in xrange(num_examples):
	#	for j in xrange(num_param):
	#		histo.get_log_derivative(j, i)

	histo.get_log_likelihood()
	histo.get_log_likelihood_sample()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:30,代码来源:distribution_histogram_modular.py

示例4: linear_hmm

# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import get_num_vectors [as 别名]
def linear_hmm ():
	print 'LinearHMM'

	from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
	from shogun.Distribution import LinearHMM

	order=3
	gap=0
	reverse=False

	charfeat=StringCharFeatures(DNA)
	charfeat.set_features(fm_dna)
	feats=StringWordFeatures(charfeat.get_alphabet())
	feats.obtain_from_char(charfeat, order-1, order, gap, reverse)

	hmm=LinearHMM(feats)
	hmm.train()

	hmm.get_transition_probs()

	num_examples=feats.get_num_vectors()
	num_param=hmm.get_num_model_parameters()
	for i in xrange(num_examples):
		for j in xrange(num_param):
			hmm.get_log_derivative(j, i)

	hmm.get_log_likelihood()
	hmm.get_log_likelihood_sample()
开发者ID:memimo,项目名称:shogun-liblinear,代码行数:30,代码来源:distribution_linear_hmm_modular.py


注:本文中的shogun.Features.StringWordFeatures.get_num_vectors方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。