本文整理汇总了Python中shogun.Features.StringWordFeatures类的典型用法代码示例。如果您正苦于以下问题:Python StringWordFeatures类的具体用法?Python StringWordFeatures怎么用?Python StringWordFeatures使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了StringWordFeatures类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: histogram
def histogram ():
print 'Histogram'
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Distribution import Histogram
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_dna)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
histo=Histogram(feats)
histo.train()
histo.get_histogram()
num_examples=feats.get_num_vectors()
num_param=histo.get_num_model_parameters()
#for i in xrange(num_examples):
# for j in xrange(num_param):
# histo.get_log_derivative(j, i)
histo.get_log_likelihood()
histo.get_log_likelihood_sample()
示例2: linear_hmm
def linear_hmm ():
print 'LinearHMM'
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Distribution import LinearHMM
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_dna)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
hmm=LinearHMM(feats)
hmm.train()
hmm.get_transition_probs()
num_examples=feats.get_num_vectors()
num_param=hmm.get_num_model_parameters()
for i in xrange(num_examples):
for j in xrange(num_param):
hmm.get_log_derivative(j, i)
hmm.get_log_likelihood()
hmm.get_log_likelihood_sample()
示例3: distribution_hmm_modular
def distribution_hmm_modular(fm_cube, N, M, pseudo, order, gap, reverse, num_examples):
from shogun.Features import StringWordFeatures, StringCharFeatures, CUBE
from shogun.Distribution import HMM, BW_NORMAL
charfeat=StringCharFeatures(CUBE)
charfeat.set_features(fm_cube)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
hmm=HMM(feats, N, M, pseudo)
hmm.train()
hmm.baum_welch_viterbi_train(BW_NORMAL)
num_examples=feats.get_num_vectors()
num_param=hmm.get_num_model_parameters()
for i in xrange(num_examples):
for j in xrange(num_param):
hmm.get_log_derivative(j, i)
best_path=0
best_path_state=0
for i in xrange(num_examples):
best_path+=hmm.best_path(i)
for j in xrange(N):
best_path_state+=hmm.get_best_path_state(i, j)
lik_example = hmm.get_log_likelihood()
lik_sample = hmm.get_log_likelihood_sample()
return lik_example, lik_sample, hmm
示例4: distribution_linearhmm_modular
def distribution_linearhmm_modular (fm_dna=traindna,order=3,gap=0,reverse=False):
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Distribution import LinearHMM
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_dna)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
hmm=LinearHMM(feats)
hmm.train()
hmm.get_transition_probs()
num_examples=feats.get_num_vectors()
num_param=hmm.get_num_model_parameters()
for i in range(num_examples):
for j in range(num_param):
hmm.get_log_derivative(j, i)
out_likelihood = hmm.get_log_likelihood()
out_sample = hmm.get_log_likelihood_sample()
return hmm,out_likelihood ,out_sample
示例5: init_sensor
def init_sensor(self, kernel, svs):
f = StringCharFeatures(svs, DNA)
kname = kernel['name']
if kname == 'spectrum':
wf = StringWordFeatures(f.get_alphabet())
wf.obtain_from_char(f, kernel['order'] - 1, kernel['order'], 0, False)
pre = SortWordString()
pre.init(wf)
wf.add_preprocessor(pre)
wf.apply_preprocessor()
f = wf
k = CommWordStringKernel(0, False)
k.set_use_dict_diagonal_optimization(kernel['order'] < 8)
self.preproc = pre
elif kname == 'wdshift':
k = WeightedDegreePositionStringKernel(0, kernel['order'])
k.set_normalizer(IdentityKernelNormalizer())
k.set_shifts(kernel['shift'] *
numpy.ones(f.get_max_vector_length(), dtype=numpy.int32))
k.set_position_weights(1.0 / f.get_max_vector_length() *
numpy.ones(f.get_max_vector_length(), dtype=numpy.float64))
else:
raise "Currently, only wdshift and spectrum kernels supported"
self.kernel = k
self.train_features = f
return (self.kernel, self.train_features)
示例6: create_hashed_features_spectrum
def create_hashed_features_spectrum(param, data):
"""
creates hashed dot features for the spectrum kernel
"""
# extract parameters
order = param["degree_spectrum"]
# fixed parameters
gap = 0
reverse = True
normalize = True
# create features
feats_char = StringCharFeatures(data, DNA)
feats_word = StringWordFeatures(feats_char.get_alphabet())
feats_word.obtain_from_char(feats_char, order-1, order, gap, reverse)
# create preproc
preproc = SortWordString()
preproc.init(feats_word)
feats_word.add_preproc(preproc)
feats_word.apply_preproc()
# finish
feats = ImplicitWeightedSpecFeatures(feats_word, normalize)
return feats
示例7: get_test_features
def get_test_features(self, seq, window):
start = self.window[0] - window[0]
end = len(seq) - window[1] + self.window[2]
size = self.window[2] - self.window[0] + 1
seq = seq[start:end]
seq = seq.replace("N", "A").replace("R", "A").replace("M", "A")
f = StringCharFeatures([seq], DNA)
if self.preproc:
wf = StringWordFeatures(f.get_alphabet())
o = self.train_features.get_order()
wf.obtain_from_char(f, 0, o, 0, False)
f = wf
f.obtain_by_sliding_window(size, 1, o - 1)
else:
f.obtain_by_sliding_window(size, 1)
return f
示例8: kernel_histogram_word_string_modular
def kernel_histogram_word_string_modular(
fm_train_dna=traindat, fm_test_dna=testdat, label_train_dna=label_traindat, order=3, gap=0, reverse=False
):
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
from shogun.Kernel import HistogramWordStringKernel
from shogun.Classifier import PluginEstimate # , MSG_DEBUG
reverse = reverse
charfeat = StringCharFeatures(DNA)
# charfeat.io.set_loglevel(MSG_DEBUG)
charfeat.set_features(fm_train_dna)
feats_train = StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order - 1, order, gap, reverse)
charfeat = StringCharFeatures(DNA)
charfeat.set_features(fm_test_dna)
feats_test = StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order - 1, order, gap, reverse)
pie = PluginEstimate()
labels = Labels(label_train_dna)
pie.set_labels(labels)
pie.set_features(feats_train)
pie.train()
kernel = HistogramWordStringKernel(feats_train, feats_train, pie)
km_train = kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
pie.set_features(feats_test)
pie.classify().get_labels()
km_test = kernel.get_kernel_matrix()
return km_train, km_test, kernel
示例9: kernel_salzberg_word_string_modular
def kernel_salzberg_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,label_train_dna=label_traindat,
order=3,gap=0,reverse=False):
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
from shogun.Kernel import SalzbergWordStringKernel
from shogun.Classifier import PluginEstimate
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
pie=PluginEstimate()
labels=Labels(label_train_dna)
pie.set_labels(labels)
pie.set_features(feats_train)
pie.train()
kernel=SalzbergWordStringKernel(feats_train, feats_train, pie, labels)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
pie.set_features(feats_test)
pie.apply().get_labels()
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例10: match_word_string
def match_word_string ():
print 'MatchWordString'
from shogun.Kernel import MatchWordStringKernel, AvgDiagKernelNormalizer
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
degree=3
scale=1.4
size_cache=10
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(DNA)
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(DNA)
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
kernel=MatchWordStringKernel(size_cache, degree)
kernel.set_normalizer(AvgDiagKernelNormalizer(scale))
kernel.init(feats_train, feats_train)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
示例11: plugin_estimate_salzberg
def plugin_estimate_salzberg ():
print 'PluginEstimate w/ SalzbergWord'
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA, Labels
from shogun.Kernel import SalzbergWordStringKernel
from shogun.Classifier import PluginEstimate
order=3
gap=0
reverse=False
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
pie=PluginEstimate()
labels=Labels(label_train_dna)
pie.set_labels(labels)
pie.set_features(feats_train)
pie.train()
kernel=SalzbergWordStringKernel(feats_train, feats_test, pie, labels)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
pie.set_features(feats_test)
pie.classify().get_labels()
km_test=kernel.get_kernel_matrix()
示例12: get_spectrum_features
def get_spectrum_features(data, order=3, gap=0, reverse=True):
"""
create feature object used by spectrum kernel
"""
charfeat = StringCharFeatures(data, DNA)
feat = StringWordFeatures(charfeat.get_alphabet())
feat.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc = SortWordString()
preproc.init(feat)
feat.add_preprocessor(preproc)
feat.apply_preprocessor()
return feat
示例13: perform_clustering
def perform_clustering(mss_id):
import numpy
import expenv
mss = expenv.MultiSplitSet.get(mss_id)
from method_mhc_mkl import SequencesHandler
from shogun.Distance import EuclidianDistance, HammingWordDistance
from shogun.Features import StringCharFeatures, StringWordFeatures, PROTEIN
from shogun.Clustering import Hierarchical
from shogun.PreProc import SortWordString
order = 1
gap = 0
reverse = False
seq_handler = SequencesHandler()
data = [seq_handler.get_seq(ss.dataset.organism) for ss in mss.split_sets]
charfeat=StringCharFeatures(PROTEIN)
charfeat.set_features(data)
feats=StringWordFeatures(charfeat.get_alphabet())
feats.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats)
feats.add_preproc(preproc)
feats.apply_preproc()
use_sign = False
distance = HammingWordDistance(feats, feats, use_sign)
#distance = EuclidianDistance()
merges=4
hierarchical=Hierarchical(merges, distance)
hierarchical.train()
hierarchical.get_merge_distances()
hierarchical.get_cluster_pairs()
return hierarchical
示例14: kernel_poly_match_word_string_modular
def kernel_poly_match_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,
degree=2,inhomogene=True,order=3,gap=0,reverse=False):
from shogun.Kernel import PolyMatchWordStringKernel
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(DNA)
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(DNA)
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
kernel=PolyMatchWordStringKernel(feats_train, feats_train, degree, inhomogene)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例15: kernel_match_word_string_modular
def kernel_match_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,
degree=3,scale=1.4,size_cache=10,order=3,gap=0,reverse=False):
from shogun.Kernel import MatchWordStringKernel, AvgDiagKernelNormalizer
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(DNA)
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(DNA)
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
kernel=MatchWordStringKernel(size_cache, degree)
kernel.set_normalizer(AvgDiagKernelNormalizer(scale))
kernel.init(feats_train, feats_train)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel