本文整理汇总了Python中shogun.Features.StringWordFeatures.apply_preprocessor方法的典型用法代码示例。如果您正苦于以下问题:Python StringWordFeatures.apply_preprocessor方法的具体用法?Python StringWordFeatures.apply_preprocessor怎么用?Python StringWordFeatures.apply_preprocessor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类shogun.Features.StringWordFeatures
的用法示例。
在下文中一共展示了StringWordFeatures.apply_preprocessor方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: distance_hammingword_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import apply_preprocessor [as 别名]
def distance_hammingword_modular (fm_train_dna=traindna,fm_test_dna=testdna,
fm_test_real=testdat,order=3,gap=0,reverse=False,use_sign=False):
from shogun.Features import StringCharFeatures, StringWordFeatures, DNA
from shogun.Preprocessor import SortWordString
from shogun.Distance import HammingWordDistance
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_train_dna)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preprocessor(preproc)
feats_train.apply_preprocessor()
charfeat=StringCharFeatures(DNA)
charfeat.set_features(fm_test_dna)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preprocessor(preproc)
feats_test.apply_preprocessor()
distance=HammingWordDistance(feats_train, feats_train, use_sign)
dm_train=distance.get_distance_matrix()
distance.init(feats_train, feats_test)
dm_test=distance.get_distance_matrix()
return distance,dm_train,dm_test
示例2: init_sensor
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import apply_preprocessor [as 别名]
def init_sensor(self, kernel, svs):
f = StringCharFeatures(svs, DNA)
kname = kernel['name']
if kname == 'spectrum':
wf = StringWordFeatures(f.get_alphabet())
wf.obtain_from_char(f, kernel['order'] - 1, kernel['order'], 0, False)
pre = SortWordString()
pre.init(wf)
wf.add_preprocessor(pre)
wf.apply_preprocessor()
f = wf
k = CommWordStringKernel(0, False)
k.set_use_dict_diagonal_optimization(kernel['order'] < 8)
self.preproc = pre
elif kname == 'wdshift':
k = WeightedDegreePositionStringKernel(0, kernel['order'])
k.set_normalizer(IdentityKernelNormalizer())
k.set_shifts(kernel['shift'] *
numpy.ones(f.get_max_vector_length(), dtype=numpy.int32))
k.set_position_weights(1.0 / f.get_max_vector_length() *
numpy.ones(f.get_max_vector_length(), dtype=numpy.float64))
else:
raise "Currently, only wdshift and spectrum kernels supported"
self.kernel = k
self.train_features = f
return (self.kernel, self.train_features)
示例3: kernel_weighted_comm_word_string_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import apply_preprocessor [as 别名]
def kernel_weighted_comm_word_string_modular (fm_train_dna=traindat,fm_test_dna=testdat,order=3,gap=0,reverse=True ):
from shogun.Kernel import WeightedCommWordStringKernel
from shogun.Features import StringWordFeatures, StringCharFeatures, DNA
from shogun.Preprocessor import SortWordString
charfeat=StringCharFeatures(fm_train_dna, DNA)
feats_train=StringWordFeatures(charfeat.get_alphabet())
feats_train.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc=SortWordString()
preproc.init(feats_train)
feats_train.add_preprocessor(preproc)
feats_train.apply_preprocessor()
charfeat=StringCharFeatures(fm_test_dna, DNA)
feats_test=StringWordFeatures(charfeat.get_alphabet())
feats_test.obtain_from_char(charfeat, order-1, order, gap, reverse)
feats_test.add_preprocessor(preproc)
feats_test.apply_preprocessor()
use_sign=False
kernel=WeightedCommWordStringKernel(feats_train, feats_train, use_sign)
km_train=kernel.get_kernel_matrix()
kernel.init(feats_train, feats_test)
km_test=kernel.get_kernel_matrix()
return km_train,km_test,kernel
示例4: get_spectrum_features
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import apply_preprocessor [as 别名]
def get_spectrum_features(data, order=3, gap=0, reverse=True):
"""
create feature object used by spectrum kernel
"""
charfeat = StringCharFeatures(data, DNA)
feat = StringWordFeatures(charfeat.get_alphabet())
feat.obtain_from_char(charfeat, order-1, order, gap, reverse)
preproc = SortWordString()
preproc.init(feat)
feat.add_preprocessor(preproc)
feat.apply_preprocessor()
return feat
示例5: tests_check_commwordkernel_memleak_modular
# 需要导入模块: from shogun.Features import StringWordFeatures [as 别名]
# 或者: from shogun.Features.StringWordFeatures import apply_preprocessor [as 别名]
def tests_check_commwordkernel_memleak_modular (num, order, gap, reverse):
import gc
from shogun.Features import Alphabet,StringCharFeatures,StringWordFeatures,DNA
from shogun.Preprocessor import SortWordString, MSG_DEBUG
from shogun.Kernel import CommWordStringKernel, IdentityKernelNormalizer
from numpy import mat
POS=[num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT']
NEG=[num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'TTGT', num*'TTGT',
num*'TTGT',num*'TTGT', num*'TTGT', num*'TTGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT',num*'ACGT', num*'ACGT',
num*'ACGT',num*'ACGT', num*'ACGT', num*'ACGT']
for i in range(10):
alpha=Alphabet(DNA)
traindat=StringCharFeatures(alpha)
traindat.set_features(POS+NEG)
trainudat=StringWordFeatures(traindat.get_alphabet());
trainudat.obtain_from_char(traindat, order-1, order, gap, reverse)
#trainudat.io.set_loglevel(MSG_DEBUG)
pre = SortWordString()
#pre.io.set_loglevel(MSG_DEBUG)
pre.init(trainudat)
trainudat.add_preprocessor(pre)
trainudat.apply_preprocessor()
spec = CommWordStringKernel(10, False)
spec.set_normalizer(IdentityKernelNormalizer())
spec.init(trainudat, trainudat)
K=spec.get_kernel_matrix()
del POS
del NEG
del order
del gap
del reverse
return K