本文整理汇总了Python中sage.modular.dirichlet.DirichletGroup.is_trivial方法的典型用法代码示例。如果您正苦于以下问题:Python DirichletGroup.is_trivial方法的具体用法?Python DirichletGroup.is_trivial怎么用?Python DirichletGroup.is_trivial使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.modular.dirichlet.DirichletGroup
的用法示例。
在下文中一共展示了DirichletGroup.is_trivial方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: AlgebraicWeight
# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import is_trivial [as 别名]
#.........这里部分代码省略.........
sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
sage: kappa.k()
13
"""
return self._k
def chi(self):
r"""
If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a
Dirichlet character `\chi`, return `\chi`.
EXAMPLE::
sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
sage: kappa.chi()
Dirichlet character modulo 29 of conductor 29 mapping 2 |--> 28 + 28*29 + 28*29^2 + ... + O(29^20)
"""
return self._chi
def _repr_(self):
r"""
String representation of self.
EXAMPLES::
sage: pAdicWeightSpace(17)(2)._repr_()
'2'
sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0)._repr_()
'(2, 17, [-1])'
sage: pAdicWeightSpace(17)(2, DirichletGroup(17, QQ).0^2)._repr_()
'2'
"""
if self._chi.is_trivial():
return "%s" % self._k
else:
return "(%s, %s, %s)" % (self._k, self._chi.modulus(), self._chi._repr_short_())
def teichmuller_type(self):
r"""
Return the Teichmuller type of this weight-character `\kappa`, which is
the unique `t \in \ZZ/(p-1)\ZZ` such that `\kappa(\mu) =
\mu^t` for \mu a `(p-1)`-st root of 1.
For `p = 2` this doesn't make sense, but we still want the Teichmuller
type to correspond to the index of the component of weight space in
which `\kappa` lies, so we return 1 if `\kappa` is odd and 0 otherwise.
EXAMPLE::
sage: pAdicWeightSpace(11)(2, DirichletGroup(11,QQ).0).teichmuller_type()
7
sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0).teichmuller_type()
14
sage: pAdicWeightSpace(2)(3, DirichletGroup(4,QQ).0).teichmuller_type()
0
"""
# Special case p == 2
if self._p == 2:
if self.is_even():
return IntegerModRing(2)(0)
else:
return IntegerModRing(2)(1)
m = IntegerModRing(self._p).multiplicative_generator()
x = [y for y in IntegerModRing(self._chi.modulus()) if y == m and y**(self._p - 1) == 1]
if len(x) != 1: raise ArithmeticError
示例2: dimension_new_cusp_forms
# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import is_trivial [as 别名]
def dimension_new_cusp_forms(self, k=2, eps=None, p=0, algorithm="CohenOesterle"):
r"""
Dimension of the new subspace (or `p`-new subspace) of cusp forms of
weight `k` and character `\varepsilon`.
INPUT:
- ``k`` - an integer (default: 2)
- ``eps`` - a Dirichlet character
- ``p`` - a prime (default: 0); just the `p`-new subspace if given
- ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This
specifies the method to use in the case of nontrivial character:
either the Cohen--Oesterle formula as described in Stein's book, or
by Moebius inversion using the subgroups GammaH (a method due to
Jordi Quer).
EXAMPLES::
sage: G = DirichletGroup(9)
sage: eps = G.0^3
sage: eps.conductor()
3
sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]]
[0, 0, 0, 2, 0, 4, 0, 6, 0]
sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
Double check using modular symbols (independent calculation)::
sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension() for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension() for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
Another example at level 33::
sage: G = DirichletGroup(33)
sage: eps = G.1
sage: eps.conductor()
11
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]]
[0, 4, 0]
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]]
[0, 4, 0]
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]]
[2, 0, 6]
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]]
[2, 0, 6]
"""
if eps == None:
return GammaH_class.dimension_new_cusp_forms(self, k, p)
N = self.level()
eps = DirichletGroup(N)(eps)
from all import Gamma0
if eps.is_trivial():
return Gamma0(N).dimension_new_cusp_forms(k, p)
from congroup_gammaH import mumu
if p == 0 or N%p != 0 or eps.conductor().valuation(p) == N.valuation(p):
D = [eps.conductor()*d for d in divisors(N//eps.conductor())]
return sum([Gamma1_constructor(M).dimension_cusp_forms(k, eps.restrict(M), algorithm)*mumu(N//M) for M in D])
eps_p = eps.restrict(N//p)
old = Gamma1_constructor(N//p).dimension_cusp_forms(k, eps_p, algorithm)
return self.dimension_cusp_forms(k, eps, algorithm) - 2*old
示例3: dimension_cusp_forms
# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import is_trivial [as 别名]
def dimension_cusp_forms(self, k=2, eps=None, algorithm="CohenOesterle"):
r"""
Return the dimension of the space of cusp forms for self, or the
dimension of the subspace corresponding to the given character if one
is supplied.
INPUT:
- ``k`` - an integer (default: 2), the weight.
- ``eps`` - either None or a Dirichlet character modulo N, where N is
the level of this group. If this is None, then the dimension of the
whole space is returned; otherwise, the dimension of the subspace of
forms of character eps.
- ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
specifies the method to use in the case of nontrivial character:
either the Cohen--Oesterle formula as described in Stein's book, or
by Moebius inversion using the subgroups GammaH (a method due to
Jordi Quer).
EXAMPLES:
We compute the same dimension in two different ways ::
sage: K = CyclotomicField(3)
sage: eps = DirichletGroup(7*43,K).0^2
sage: G = Gamma1(7*43)
Via Cohen--Oesterle: ::
sage: Gamma1(7*43).dimension_cusp_forms(2, eps)
28
Via Quer's method: ::
sage: Gamma1(7*43).dimension_cusp_forms(2, eps, algorithm="Quer")
28
Some more examples: ::
sage: G.<eps> = DirichletGroup(9)
sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [1..10]]
[0, 0, 1, 0, 3, 0, 5, 0, 7, 0]
sage: [Gamma1(9).dimension_cusp_forms(k, eps^2) for k in [1..10]]
[0, 0, 0, 2, 0, 4, 0, 6, 0, 8]
"""
from all import Gamma0
# first deal with special cases
if eps is None:
return GammaH_class.dimension_cusp_forms(self, k)
N = self.level()
if eps.base_ring().characteristic() != 0:
raise ValueError
eps = DirichletGroup(N, eps.base_ring())(eps)
if eps.is_trivial():
return Gamma0(N).dimension_cusp_forms(k)
if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()):
return ZZ(0)
if k == 1:
try:
n = self.dimension_cusp_forms(1)
if n == 0:
return ZZ(0)
else: # never happens at present
raise NotImplementedError, "Computations of dimensions of spaces of weight 1 cusp forms not implemented at present"
except NotImplementedError:
raise
# now the main part
if algorithm == "Quer":
n = eps.order()
dim = ZZ(0)
for d in n.divisors():
G = GammaH_constructor(N,(eps**d).kernel())
dim = dim + moebius(d)*G.dimension_cusp_forms(k)
return dim//phi(n)
elif algorithm == "CohenOesterle":
K = eps.base_ring()
from sage.modular.dims import CohenOesterle
from all import Gamma0
return ZZ( K(Gamma0(N).index() * (k-1)/ZZ(12)) + CohenOesterle(eps,k) )
else: #algorithm not in ["CohenOesterle", "Quer"]:
raise ValueError, "Unrecognised algorithm in dimension_cusp_forms"
示例4: dimension_eis
# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import is_trivial [as 别名]
def dimension_eis(self, k=2, eps=None, algorithm="CohenOesterle"):
r"""
Return the dimension of the space of Eisenstein series forms for self,
or the dimension of the subspace corresponding to the given character
if one is supplied.
INPUT:
- ``k`` - an integer (default: 2), the weight.
- ``eps`` - either None or a Dirichlet character modulo N, where N is
the level of this group. If this is None, then the dimension of the
whole space is returned; otherwise, the dimension of the subspace of
Eisenstein series of character eps.
- ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
specifies the method to use in the case of nontrivial character:
either the Cohen--Oesterle formula as described in Stein's book, or
by Moebius inversion using the subgroups GammaH (a method due to
Jordi Quer).
AUTHORS:
- William Stein - Cohen--Oesterle algorithm
- Jordi Quer - algorithm based on GammaH subgroups
- David Loeffler (2009) - code refactoring
EXAMPLES:
The following two computations use different algorithms: ::
sage: [Gamma1(36).dimension_eis(1,eps) for eps in DirichletGroup(36)]
[0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]
sage: [Gamma1(36).dimension_eis(1,eps,algorithm="Quer") for eps in DirichletGroup(36)]
[0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]
So do these: ::
sage: [Gamma1(48).dimension_eis(3,eps) for eps in DirichletGroup(48)]
[0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
sage: [Gamma1(48).dimension_eis(3,eps,algorithm="Quer") for eps in DirichletGroup(48)]
[0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
"""
from all import Gamma0
# first deal with special cases
if eps is None:
return GammaH_class.dimension_eis(self, k)
N = self.level()
eps = DirichletGroup(N)(eps)
if eps.is_trivial():
return Gamma0(N).dimension_eis(k)
# Note case of k = 0 and trivial character already dealt with separately, so k <= 0 here is valid:
if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()):
return ZZ(0)
if algorithm == "Quer":
n = eps.order()
dim = ZZ(0)
for d in n.divisors():
G = GammaH_constructor(N,(eps**d).kernel())
dim = dim + moebius(d)*G.dimension_eis(k)
return dim//phi(n)
elif algorithm == "CohenOesterle":
from sage.modular.dims import CohenOesterle
K = eps.base_ring()
j = 2-k
# We use the Cohen-Oesterle formula in a subtle way to
# compute dim M_k(N,eps) (see Ch. 6 of William Stein's book on
# computing with modular forms).
alpha = -ZZ( K(Gamma0(N).index()*(j-1)/ZZ(12)) + CohenOesterle(eps,j) )
if k == 1:
return alpha
else:
return alpha - self.dimension_cusp_forms(k, eps)
else: #algorithm not in ["CohenOesterle", "Quer"]:
raise ValueError, "Unrecognised algorithm in dimension_eis"
示例5: dimension_of_ordinary_subspace
# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import is_trivial [as 别名]
def dimension_of_ordinary_subspace(self, p=None, cusp=False):
"""
If ``cusp`` is ``True``, return dimension of cuspidal ordinary
subspace. This does a weight 2 computation with sage's ModularSymbols.
EXAMPLES::
sage: M = OverconvergentModularSymbols(11, 0, sign=-1, p=3, prec_cap=4, base=ZpCA(3, 8))
sage: M.dimension_of_ordinary_subspace()
2
sage: M.dimension_of_ordinary_subspace(cusp=True)
2
sage: M = OverconvergentModularSymbols(11, 0, sign=1, p=3, prec_cap=4, base=ZpCA(3, 8))
sage: M.dimension_of_ordinary_subspace(cusp=True)
2
sage: M.dimension_of_ordinary_subspace()
4
sage: M = OverconvergentModularSymbols(11, 0, sign=0, p=3, prec_cap=4, base=ZpCA(3, 8))
sage: M.dimension_of_ordinary_subspace()
6
sage: M.dimension_of_ordinary_subspace(cusp=True)
4
sage: M = OverconvergentModularSymbols(11, 0, sign=1, p=11, prec_cap=4, base=ZpCA(11, 8))
sage: M.dimension_of_ordinary_subspace(cusp=True)
1
sage: M.dimension_of_ordinary_subspace()
2
sage: M = OverconvergentModularSymbols(11, 2, sign=1, p=11, prec_cap=4, base=ZpCA(11, 8))
sage: M.dimension_of_ordinary_subspace(cusp=True)
0
sage: M.dimension_of_ordinary_subspace()
1
sage: M = OverconvergentModularSymbols(11, 10, sign=1, p=11, prec_cap=4, base=ZpCA(11, 8))
sage: M.dimension_of_ordinary_subspace(cusp=True)
1
sage: M.dimension_of_ordinary_subspace()
2
An example with odd weight and hence non-trivial character::
sage: K = Qp(11, 6)
sage: DG = DirichletGroup(11, K)
sage: chi = DG([K(378703)])
sage: MM = FamiliesOfOMS(chi, 1, p=11, prec_cap=[4, 4], base_coeffs=ZpCA(11, 4), sign=-1)
sage: MM.dimension_of_ordinary_subspace()
1
"""
try:
p = self.prime()
except AttributeError:
if p is None:
raise ValueError("If self doesn't have a prime, must specify p.")
try:
return self._ord_dim_dict[(p, cusp)]
except AttributeError:
self._ord_dim_dict = {}
except KeyError:
pass
from sage.modular.dirichlet import DirichletGroup
from sage.rings.finite_rings.constructor import GF
try:
chi = self.character()
except AttributeError:
chi = DirichletGroup(self.level(), GF(p))[0]
if chi is None:
chi = DirichletGroup(self.level(), GF(p))[0]
from sage.modular.modsym.modsym import ModularSymbols
r = self.weight() % (p-1)
if chi.is_trivial():
N = chi.modulus()
if N % p != 0:
N *= p
else:
e = N.valuation(p)
N.divide_knowing_divisible_by(p ** (e-1))
chi = DirichletGroup(N, GF(p))[0]
elif chi.modulus() % p != 0:
chi = DirichletGroup(chi.modulus() * p, GF(p))(chi)
DG = DirichletGroup(chi.modulus(), GF(p))
if r == 0:
from sage.modular.arithgroup.congroup_gamma0 import Gamma0_constructor as Gamma0
verbose("in dim: %s, %s, %s"%(self.sign(), chi, p))
M = ModularSymbols(DG(chi), 2, self.sign(), GF(p))
else:
psi = [GF(p)(u) ** r for u in DG.unit_gens()] #mod p Teichmuller^r
psi = DG(psi)
M = ModularSymbols(DG(chi) * psi, 2, self.sign(), GF(p))
if cusp:
M = M.cuspidal_subspace()
hecke_poly = M.hecke_polynomial(p)
verbose("in dim: %s"%(hecke_poly))
x = hecke_poly.parent().gen()
d = hecke_poly.degree() - hecke_poly.ord(x)
self._ord_dim_dict[(p, cusp)] = d
return d