当前位置: 首页>>代码示例>>Python>>正文


Python DirichletGroup.base_ring方法代码示例

本文整理汇总了Python中sage.modular.dirichlet.DirichletGroup.base_ring方法的典型用法代码示例。如果您正苦于以下问题:Python DirichletGroup.base_ring方法的具体用法?Python DirichletGroup.base_ring怎么用?Python DirichletGroup.base_ring使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.modular.dirichlet.DirichletGroup的用法示例。


在下文中一共展示了DirichletGroup.base_ring方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dimension_cusp_forms

# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import base_ring [as 别名]
    def dimension_cusp_forms(self, k=2, eps=None, algorithm="CohenOesterle"):
        r"""
        Return the dimension of the space of cusp forms for self, or the
        dimension of the subspace corresponding to the given character if one
        is supplied.

        INPUT:

        - ``k`` - an integer (default: 2), the weight.

        - ``eps`` - either None or a Dirichlet character modulo N, where N is
          the level of this group. If this is None, then the dimension of the
          whole space is returned; otherwise, the dimension of the subspace of
          forms of character eps.

        - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Moebius inversion using the subgroups GammaH (a method due to
          Jordi Quer).

        EXAMPLES:

        We compute the same dimension in two different ways ::

            sage: K = CyclotomicField(3)
            sage: eps = DirichletGroup(7*43,K).0^2
            sage: G = Gamma1(7*43)

        Via Cohen--Oesterle: ::

            sage: Gamma1(7*43).dimension_cusp_forms(2, eps)
            28

        Via Quer's method: ::

            sage: Gamma1(7*43).dimension_cusp_forms(2, eps, algorithm="Quer")
            28

        Some more examples: ::

            sage: G.<eps> = DirichletGroup(9)
            sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [1..10]]
            [0, 0, 1, 0, 3, 0, 5, 0, 7, 0]
            sage: [Gamma1(9).dimension_cusp_forms(k, eps^2) for k in [1..10]]
            [0, 0, 0, 2, 0, 4, 0, 6, 0, 8]
        """

        from all import Gamma0

        # first deal with special cases

        if eps is None:
            return GammaH_class.dimension_cusp_forms(self, k)

        N = self.level()
        if eps.base_ring().characteristic() != 0:
            raise ValueError

        eps = DirichletGroup(N, eps.base_ring())(eps)

        if eps.is_trivial():
            return Gamma0(N).dimension_cusp_forms(k)

        if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()):
            return ZZ(0)

        if k == 1:
            try:
                n = self.dimension_cusp_forms(1)
                if n == 0:
                    return ZZ(0)
                else: # never happens at present
                    raise NotImplementedError, "Computations of dimensions of spaces of weight 1 cusp forms not implemented at present"
            except NotImplementedError:
                raise

        # now the main part

        if algorithm == "Quer":
            n = eps.order()
            dim = ZZ(0)
            for d in n.divisors():
                G = GammaH_constructor(N,(eps**d).kernel())
                dim = dim + moebius(d)*G.dimension_cusp_forms(k)
            return dim//phi(n)

        elif algorithm == "CohenOesterle":
            K = eps.base_ring()
            from sage.modular.dims import CohenOesterle
            from all import Gamma0
            return ZZ( K(Gamma0(N).index() * (k-1)/ZZ(12)) + CohenOesterle(eps,k) )

        else: #algorithm not in ["CohenOesterle", "Quer"]:
            raise ValueError, "Unrecognised algorithm in dimension_cusp_forms"
开发者ID:biasse,项目名称:sage,代码行数:97,代码来源:congroup_gamma1.py

示例2: dimension_eis

# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import base_ring [as 别名]
    def dimension_eis(self, k=2, eps=None, algorithm="CohenOesterle"):
        r"""
        Return the dimension of the space of Eisenstein series forms for self,
        or the dimension of the subspace corresponding to the given character
        if one is supplied.

        INPUT:

        - ``k`` - an integer (default: 2), the weight.

        - ``eps`` - either None or a Dirichlet character modulo N, where N is
          the level of this group. If this is None, then the dimension of the
          whole space is returned; otherwise, the dimension of the subspace of
          Eisenstein series of character eps.

        - ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Moebius inversion using the subgroups GammaH (a method due to
          Jordi Quer).

        AUTHORS:

        - William Stein - Cohen--Oesterle algorithm

        - Jordi Quer - algorithm based on GammaH subgroups

        - David Loeffler (2009) - code refactoring

        EXAMPLES:

        The following two computations use different algorithms: ::

            sage: [Gamma1(36).dimension_eis(1,eps) for eps in DirichletGroup(36)]
            [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]
            sage: [Gamma1(36).dimension_eis(1,eps,algorithm="Quer") for eps in DirichletGroup(36)]
            [0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]

        So do these: ::

            sage: [Gamma1(48).dimension_eis(3,eps) for eps in DirichletGroup(48)]
            [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
            sage: [Gamma1(48).dimension_eis(3,eps,algorithm="Quer") for eps in DirichletGroup(48)]
            [0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
        """
        from all import Gamma0

        # first deal with special cases

        if eps is None:
            return GammaH_class.dimension_eis(self, k)

        N = self.level()
        eps = DirichletGroup(N)(eps)

        if eps.is_trivial():
            return Gamma0(N).dimension_eis(k)

        # Note case of k = 0 and trivial character already dealt with separately, so k <= 0 here is valid:
        if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()):
            return ZZ(0)

        if algorithm == "Quer":
            n = eps.order()
            dim = ZZ(0)
            for d in n.divisors():
                G = GammaH_constructor(N,(eps**d).kernel())
                dim = dim + moebius(d)*G.dimension_eis(k)
            return dim//phi(n)

        elif algorithm == "CohenOesterle":
            from sage.modular.dims import CohenOesterle
            K = eps.base_ring()
            j = 2-k
            # We use the Cohen-Oesterle formula in a subtle way to
            # compute dim M_k(N,eps) (see Ch. 6 of William Stein's book on
            # computing with modular forms).
            alpha = -ZZ( K(Gamma0(N).index()*(j-1)/ZZ(12)) + CohenOesterle(eps,j) )
            if k == 1:
                return alpha
            else:
                return alpha - self.dimension_cusp_forms(k, eps)

        else: #algorithm not in ["CohenOesterle", "Quer"]:
            raise ValueError, "Unrecognised algorithm in dimension_eis"
开发者ID:biasse,项目名称:sage,代码行数:87,代码来源:congroup_gamma1.py

示例3: dimension_new_cusp_forms

# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import base_ring [as 别名]
    def dimension_new_cusp_forms(self, k=2, eps=None, p=0, algorithm="CohenOesterle"):
        r"""
        Dimension of the new subspace (or `p`-new subspace) of cusp forms of
        weight `k` and character `\varepsilon`.

        INPUT:

        - ``k`` - an integer (default: 2)

        - ``eps`` - a Dirichlet character

        -  ``p`` - a prime (default: 0); just the `p`-new subspace if given

        - ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Möbius inversion using the subgroups GammaH (a method due to
          Jordi Quer).

        EXAMPLES::

            sage: G = DirichletGroup(9)
            sage: eps = G.0^3
            sage: eps.conductor()
            3
            sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]
            sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]]
            [0, 0, 0, 2, 0, 4, 0, 6, 0]
            sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]

        Double check using modular symbols (independent calculation)::

            sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension()  for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]
            sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension()  for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]

        Another example at level 33::

            sage: G = DirichletGroup(33)
            sage: eps = G.1
            sage: eps.conductor()
            11
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]]
            [0, 4, 0]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]]
            [0, 4, 0]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]]
            [2, 0, 6]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]]
            [2, 0, 6]

        """

        if eps is None:
            return GammaH_class.dimension_new_cusp_forms(self, k, p)

        N = self.level()
        eps = DirichletGroup(N, eps.base_ring())(eps)

        if eps.is_trivial():
            from all import Gamma0
            return Gamma0(N).dimension_new_cusp_forms(k, p)

        from congroup_gammaH import mumu

        if p == 0 or N%p != 0 or eps.conductor().valuation(p) == N.valuation(p):
            D = [eps.conductor()*d for d in divisors(N//eps.conductor())]
            return sum([Gamma1_constructor(M).dimension_cusp_forms(k, eps.restrict(M), algorithm)*mumu(N//M) for M in D])
        eps_p = eps.restrict(N//p)
        old = Gamma1_constructor(N//p).dimension_cusp_forms(k, eps_p, algorithm)
        return self.dimension_cusp_forms(k, eps, algorithm) - 2*old
开发者ID:Babyll,项目名称:sage,代码行数:76,代码来源:congroup_gamma1.py


注:本文中的sage.modular.dirichlet.DirichletGroup.base_ring方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。