当前位置: 首页>>代码示例>>Python>>正文


Python DirichletGroup.conductor方法代码示例

本文整理汇总了Python中sage.modular.dirichlet.DirichletGroup.conductor方法的典型用法代码示例。如果您正苦于以下问题:Python DirichletGroup.conductor方法的具体用法?Python DirichletGroup.conductor怎么用?Python DirichletGroup.conductor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.modular.dirichlet.DirichletGroup的用法示例。


在下文中一共展示了DirichletGroup.conductor方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: AlgebraicWeight

# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import conductor [as 别名]
class AlgebraicWeight(WeightCharacter):
    r"""
    A point in weight space corresponding to a locally algebraic character, of
    the form `x \mapsto \chi(x) x^k` where `k` is an integer and `\chi` is a
    Dirichlet character modulo `p^n` for some `n`.

    TESTS::

        sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0) # exact
        sage: w == loads(dumps(w))
        True
        sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, Qp(23)).0) # inexact
        sage: w == loads(dumps(w))
        True
        sage: w is loads(dumps(w)) # elements are not globally unique
        False
    """

    def __init__(self, parent, k, chi=None):
        r"""
        Create a locally algebraic weight-character.

        EXAMPLES::

            sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0)
            (13, 29, [2 + 2*29 + ... + O(29^20)])
        """
        WeightCharacter.__init__(self, parent)
        k = ZZ(k)
        self._k = k
        if chi is None: 
            chi = trivial_character(self._p, QQ)
        n = ZZ(chi.conductor())
        if n == 1: 
            n = self._p
        if not n.is_power_of(self._p):
            raise ValueError, "Character must have %s-power conductor" % p
        self._chi = DirichletGroup(n, chi.base_ring())(chi)

    def __call__(self, x):
        r"""
        Evaluate this character at an element of `\ZZ_p^\times`.

        EXAMPLES:

        Exact answers are returned when this is possible::

            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, QQ).0)
            sage: kappa(1)
            1
            sage: kappa(0)
            0
            sage: kappa(12)
            -106993205379072
            sage: kappa(-1)
            -1
            sage: kappa(13 + 4*29 + 11*29^2 + O(29^3))
            9 + 21*29 + 27*29^2 + O(29^3)

        When the character chi is defined over a p-adic field, the results returned are inexact::

            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
            sage: kappa(1)
            1 + O(29^20)
            sage: kappa(0)
            0
            sage: kappa(12)
            17 + 11*29 + 7*29^2 + 4*29^3 + 5*29^4 + 2*29^5 + 13*29^6 + 3*29^7 + 18*29^8 + 21*29^9 + 28*29^10 + 28*29^11 + 28*29^12 + 28*29^13 + 28*29^14 + 28*29^15 + 28*29^16 + 28*29^17 + 28*29^18 + 28*29^19 + O(29^20)
            sage: kappa(12) == -106993205379072
            True
            sage: kappa(-1) == -1
            True
            sage: kappa(13 + 4*29 + 11*29^2 + O(29^3))
            9 + 21*29 + 27*29^2 + O(29^3)
        """
        if isinstance(x, pAdicGenericElement):
            if x.parent().prime() != self._p:
                raise TypeError, "x must be an integer or a %s-adic integer" % self._p
            if self._p**(x.precision_absolute()) < self._chi.conductor():
                raise Exception, "Precision too low"
            xint = x.lift()
        else:
            xint = x
        if (xint % self._p == 0): return 0
        return self._chi(xint) * x**self._k 

    def k(self):
        r"""
        If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a
        Dirichlet character `\chi`, return `k`.

        EXAMPLE::
        
            sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
            sage: kappa.k()
            13
        """
        return self._k

    def chi(self):
#.........这里部分代码省略.........
开发者ID:bgxcpku,项目名称:sagelib,代码行数:103,代码来源:weightspace.py

示例2: dimension_new_cusp_forms

# 需要导入模块: from sage.modular.dirichlet import DirichletGroup [as 别名]
# 或者: from sage.modular.dirichlet.DirichletGroup import conductor [as 别名]
    def dimension_new_cusp_forms(self, k=2, eps=None, p=0, algorithm="CohenOesterle"):
        r"""
        Dimension of the new subspace (or `p`-new subspace) of cusp forms of
        weight `k` and character `\varepsilon`.

        INPUT:

        - ``k`` - an integer (default: 2)

        - ``eps`` - a Dirichlet character

        -  ``p`` - a prime (default: 0); just the `p`-new subspace if given

        - ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This
          specifies the method to use in the case of nontrivial character:
          either the Cohen--Oesterle formula as described in Stein's book, or
          by Moebius inversion using the subgroups GammaH (a method due to
          Jordi Quer).

        EXAMPLES::

            sage: G = DirichletGroup(9)
            sage: eps = G.0^3
            sage: eps.conductor()
            3
            sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]
            sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]]
            [0, 0, 0, 2, 0, 4, 0, 6, 0]
            sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]

        Double check using modular symbols (independent calculation)::

            sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension()  for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]
            sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension()  for k in [2..10]]
            [0, 0, 0, 2, 0, 2, 0, 2, 0]

        Another example at level 33::

            sage: G = DirichletGroup(33)
            sage: eps = G.1
            sage: eps.conductor()
            11
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]]
            [0, 4, 0]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]]
            [0, 4, 0]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]]
            [2, 0, 6]
            sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]]
            [2, 0, 6]

        """

        if eps == None:
            return GammaH_class.dimension_new_cusp_forms(self, k, p)

        N = self.level()
        eps = DirichletGroup(N)(eps)

        from all import Gamma0

        if eps.is_trivial():
            return Gamma0(N).dimension_new_cusp_forms(k, p)

        from congroup_gammaH import mumu

        if p == 0 or N%p != 0 or eps.conductor().valuation(p) == N.valuation(p):
            D = [eps.conductor()*d for d in divisors(N//eps.conductor())]
            return sum([Gamma1_constructor(M).dimension_cusp_forms(k, eps.restrict(M), algorithm)*mumu(N//M) for M in D])
        eps_p = eps.restrict(N//p)
        old = Gamma1_constructor(N//p).dimension_cusp_forms(k, eps_p, algorithm)
        return self.dimension_cusp_forms(k, eps, algorithm) - 2*old
开发者ID:biasse,项目名称:sage,代码行数:77,代码来源:congroup_gamma1.py


注:本文中的sage.modular.dirichlet.DirichletGroup.conductor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。