本文整理汇总了Python中sage.modular.dirichlet.DirichletGroup类的典型用法代码示例。如果您正苦于以下问题:Python DirichletGroup类的具体用法?Python DirichletGroup怎么用?Python DirichletGroup使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了DirichletGroup类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: central_character
def central_character(self):
r"""
Return the central character of this representation. This is the
restriction to `\QQ_p^\times` of the unique smooth character `\omega`
of `\mathbf{A}^\times / \QQ^\times` such that `\omega(\varpi_\ell) =
\ell^j \varepsilon(\ell)` for all primes `\ell \nmid Np`, where
`\varpi_\ell` is a uniformiser at `\ell`, `\varepsilon` is the
Nebentypus character of the newform `f`, and `j` is the twist factor
(see the documentation for :func:`~LocalComponent`).
EXAMPLES::
sage: LocalComponent(Newform('27a'), 3).central_character()
Character of Q_3*, of level 0, mapping 3 |--> 1
sage: LocalComponent(Newforms(Gamma1(5), 5, names='c')[0], 5).central_character()
Character of Q_5*, of level 1, mapping 2 |--> c0 + 1, 5 |--> 125
sage: LocalComponent(Newforms(DirichletGroup(24)([1, -1,-1]), 3, names='a')[0], 2).central_character()
Character of Q_2*, of level 3, mapping 7 |--> 1, 5 |--> -1, 2 |--> -2
"""
from sage.rings.arith import crt
chi = self.newform().character()
f = self.prime() ** self.conductor()
N = self.newform().level() // f
G = DirichletGroup(f, self.coefficient_field())
chip = G([chi(crt(ZZ(x), 1, f, N)) for x in G.unit_gens()]).primitive_character()
a = crt(1, self.prime(), f, N)
if chip.conductor() == 1:
return SmoothCharacterGroupQp(self.prime(), self.coefficient_field()).character(0, [chi(a) * self.prime()**self.twist_factor()])
else:
return SmoothCharacterGroupQp(self.prime(), self.coefficient_field()).character(chip.conductor().valuation(self.prime()), list((~chip).values_on_gens()) + [chi(a) * self.prime()**self.twist_factor()])
示例2: set_info_for_navigation
def set_info_for_navigation(info, is_set, sbar):
r"""
Set information for the navigation page.
"""
(friends, lifts) = sbar
## We always print the list of weights
info['initial_list_of_weights'] = print_list_of_weights()
# ajax_more2(print_list_of_weights,{'kstart':[0,10,25,50],'klen':[15,15,15]},text=['<<','>>'])
## And the list of characters if we know the level.
if(is_set['level']):
s = "<option value=" + str(0) + ">Trivial character</option>"
D = DirichletGroup(info['level'])
if(is_set['weight'] and is_even(info['weight'])):
if(is_fundamental_discriminant(info['level'])):
x = kronecker_character(info['level'])
xi = D.list().index(x)
s = s + "<option value=" + str(xi) + ">Kronecker character</option>"
for x in D:
if(is_set['weight'] and is_even(info['weight']) and x.is_odd()):
continue
if(is_set['weight'] and is_odd(info['weight']) and x.is_even()):
continue
xi = D.list().index(x)
# s=s+"<option value="+str(xi)+">\(\chi_{"+str(xi)+"}\)</option>"
s = s + "<option value=" + str(xi) + ">" + str(xi) + "</option>"
info['list_of_characters'] = s
friends.append(('L-function', '/Lfunction/ModularForm/GL2/Q/holomorphic/'))
lifts.append(('Half-Integral Weight Forms', '/ModularForm/Mp2/Q'))
lifts.append(('Siegel Modular Forms', '/ModularForm/GSp4/Q'))
return (info, lifts)
示例3: dc_calc_gauss
def dc_calc_gauss(modulus, number):
arg = request.args.get("val", [])
if not arg:
return flask.abort(404)
try:
from sage.modular.dirichlet import DirichletGroup
chi = DirichletGroup(modulus)[number]
gauss_sum_numerical = chi.gauss_sum_numerical(100, int(arg))
return "\(%s\)" % (latex(gauss_sum_numerical))
except Exception, e:
return "<span style='color:red;'>ERROR: %s</span>" % e
示例4: dc_calc_kloosterman
def dc_calc_kloosterman(modulus, number):
arg = request.args.get("val", [])
if not arg:
return flask.abort(404)
try:
arg = map(int, arg.split(","))
from sage.modular.dirichlet import DirichletGroup
chi = DirichletGroup(modulus)[number]
kloosterman_sum_numerical = chi.kloosterman_sum_numerical(100, arg[0], arg[1])
return "\(%s\)" % (latex(kloosterman_sum_numerical))
except Exception, e:
return "<span style='color:red;'>ERROR: %s</span>" % e
示例5: print_list_of_characters
def print_list_of_characters(level=1, weight=2):
r"""
Prints a list of characters compatible with the weight and level.
"""
emf_logger.debug("print_list_of_chars")
D = DirichletGroup(level)
res = list()
for j in range(len(D.list())):
if D.list()[j].is_even() and is_even(weight):
res.append(j)
if D.list()[j].is_odd() and is_odd(weight):
res.append(j)
s = ""
for j in res:
s += "\(\chi_{" + str(j) + "}\)"
return s
示例6: dc_calc_jacobi
def dc_calc_jacobi(modulus, number):
arg = request.args.get("val", [])
if not arg:
return flask.abort(404)
try:
arg = map(int, arg.split("."))
mod = arg[0]
num = arg[1]
from sage.modular.dirichlet import DirichletGroup
chi = DirichletGroup(modulus)[number]
psi = DirichletGroup(mod)[num]
jacobi_sum = chi.jacobi_sum(psi)
return "\(%s\)" % (latex(jacobi_sum))
except Exception, e:
return "<span style='color:red;'>ERROR: %s</span>" % e
示例7: render_elliptic_modular_form_space
def render_elliptic_modular_form_space(level=None, weight=None, character=None, label=None, **kwds):
r"""
Render the webpage for a elliptic modular forms space.
"""
emf_logger.debug("In render_elliptic_modular_form_space kwds: {0}".format(kwds))
emf_logger.debug("Input: level={0},weight={1},character={2},label={3}".format(level, weight, character, label))
info = to_dict(kwds)
info["level"] = level
info["weight"] = weight
info["character"] = character
# if kwds.has_key('character') and kwds['character']=='*':
# return render_elliptic_modular_form_space_list_chars(level,weight)
if character == 0:
dimtbl = DimensionTable()
else:
dimtbl = DimensionTable(1)
if not dimtbl.is_in_db(level, weight, character):
emf_logger.debug("Data not available")
if character == 0:
d = dimension_new_cusp_forms(level, weight)
else:
D = DirichletGroup(level)
x = D.galois_orbits(reps_only=True)[character]
d = dimension_new_cusp_forms(x, weight)
if d > 0:
return render_template("not_available.html")
else:
info["is_empty"] = True
return render_template("emf_space.html", **info)
emf_logger.debug("Created dimension table in render_elliptic_modular_form_space")
info = set_info_for_modular_form_space(**info)
emf_logger.debug("keys={0}".format(info.keys()))
if "download" in kwds and "error" not in kwds:
return send_file(info["tempfile"], as_attachment=True, attachment_filename=info["filename"])
if "dimension_newspace" in kwds and kwds["dimension_newspace"] == 1:
# if there is only one orbit we list it
emf_logger.debug("Dimension of newforms is one!")
info["label"] = "a"
return redirect(url_for("emf.render_elliptic_modular_forms", **info))
info["title"] = "Newforms of weight %s on \(\Gamma_{0}(%s)\)" % (weight, level)
bread = [(EMF_TOP, url_for("emf.render_elliptic_modular_forms"))]
bread.append(("Level %s" % level, url_for("emf.render_elliptic_modular_forms", level=level)))
bread.append(("Weight %s" % weight, url_for("emf.render_elliptic_modular_forms", level=level, weight=weight)))
# emf_logger.debug("friends={0}".format(friends))
info["bread"] = bread
return render_template("emf_space.html", **info)
示例8: _Weyl_law_consts
def _Weyl_law_consts(self):
r"""
Compute constants for the Weyl law on self._G
OUTPUT:
- tuple of real numbers
EXAMPLES::
sage: M=MaassWaveForms(MySubgroup(Gamma0(1)))
sage: M._Weyl_law_consts()
(0, 2/pi, (log(pi) - log(2) + 2)/pi, 0, -2)
"""
import mpmath
pi=mpmath.fp.pi
ix=Integer(self._G.index())
nc=Integer(len(self._G.cusps()))
if(self._G.is_congruence()):
lvl=Integer(self._G.level())
else:
lvl=0
n2=Integer(self._G.nu2())
n3=Integer(self._G.nu3())
c1=ix/Integer(12)
c2=Integer(2)*nc/pi
c3=nc*(Integer(2)-ln(Integer(2))+ln(pi))/pi
if(lvl<>0):
A=1
for q in divisors(lvl):
num_prim_dc=0
DG=DirichletGroup(q)
for chi in DG.list():
if(chi.is_primitive()):
num_prim_dc=num_prim_dc+1
for m in divisors(lvl):
if(lvl % (m*q) == 0 and m % q ==0 ):
fak=(q*lvl)/gcd(m,lvl/m)
A=A*Integer(fak)**num_prim_dc
c4=-ln(A)/pi
else:
c4=Integer(0)
# constant term
c5=-ix/144+n2/8+n3*2/9-nc/4-1
return (c1,c2,c3,c4,c5)
示例9: __init__
def __init__(self, parent, k, chi=None):
r"""
Create a locally algebraic weight-character.
EXAMPLES::
sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0)
(13, 29, [2 + 2*29 + ... + O(29^20)])
"""
WeightCharacter.__init__(self, parent)
k = ZZ(k)
self._k = k
if chi is None:
chi = trivial_character(self._p, QQ)
n = ZZ(chi.conductor())
if n == 1:
n = self._p
if not n.is_power_of(self._p):
raise ValueError, "Character must have %s-power conductor" % p
self._chi = DirichletGroup(n, chi.base_ring())(chi)
示例10: AlgebraicWeight
class AlgebraicWeight(WeightCharacter):
r"""
A point in weight space corresponding to a locally algebraic character, of
the form `x \mapsto \chi(x) x^k` where `k` is an integer and `\chi` is a
Dirichlet character modulo `p^n` for some `n`.
TESTS::
sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, QQ).0) # exact
sage: w == loads(dumps(w))
True
sage: w = pAdicWeightSpace(23)(12, DirichletGroup(23, Qp(23)).0) # inexact
sage: w == loads(dumps(w))
True
sage: w is loads(dumps(w)) # elements are not globally unique
False
"""
def __init__(self, parent, k, chi=None):
r"""
Create a locally algebraic weight-character.
EXAMPLES::
sage: pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0)
(13, 29, [2 + 2*29 + ... + O(29^20)])
"""
WeightCharacter.__init__(self, parent)
k = ZZ(k)
self._k = k
if chi is None:
chi = trivial_character(self._p, QQ)
n = ZZ(chi.conductor())
if n == 1:
n = self._p
if not n.is_power_of(self._p):
raise ValueError, "Character must have %s-power conductor" % p
self._chi = DirichletGroup(n, chi.base_ring())(chi)
def __call__(self, x):
r"""
Evaluate this character at an element of `\ZZ_p^\times`.
EXAMPLES:
Exact answers are returned when this is possible::
sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, QQ).0)
sage: kappa(1)
1
sage: kappa(0)
0
sage: kappa(12)
-106993205379072
sage: kappa(-1)
-1
sage: kappa(13 + 4*29 + 11*29^2 + O(29^3))
9 + 21*29 + 27*29^2 + O(29^3)
When the character chi is defined over a p-adic field, the results returned are inexact::
sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
sage: kappa(1)
1 + O(29^20)
sage: kappa(0)
0
sage: kappa(12)
17 + 11*29 + 7*29^2 + 4*29^3 + 5*29^4 + 2*29^5 + 13*29^6 + 3*29^7 + 18*29^8 + 21*29^9 + 28*29^10 + 28*29^11 + 28*29^12 + 28*29^13 + 28*29^14 + 28*29^15 + 28*29^16 + 28*29^17 + 28*29^18 + 28*29^19 + O(29^20)
sage: kappa(12) == -106993205379072
True
sage: kappa(-1) == -1
True
sage: kappa(13 + 4*29 + 11*29^2 + O(29^3))
9 + 21*29 + 27*29^2 + O(29^3)
"""
if isinstance(x, pAdicGenericElement):
if x.parent().prime() != self._p:
raise TypeError, "x must be an integer or a %s-adic integer" % self._p
if self._p**(x.precision_absolute()) < self._chi.conductor():
raise Exception, "Precision too low"
xint = x.lift()
else:
xint = x
if (xint % self._p == 0): return 0
return self._chi(xint) * x**self._k
def k(self):
r"""
If this character is `x \mapsto x^k \chi(x)` for an integer `k` and a
Dirichlet character `\chi`, return `k`.
EXAMPLE::
sage: kappa = pAdicWeightSpace(29)(13, DirichletGroup(29, Qp(29)).0^14)
sage: kappa.k()
13
"""
return self._k
def chi(self):
#.........这里部分代码省略.........
示例11: set_table
def set_table(info, is_set, make_link=True): # level_min,level_max,weight=2,chi=0,make_link=True):
r"""
make a bunch of html tables with information about spaces of modular forms
with parameters in the given ranges.
Should use database in the future...
"""
D = 0
rowlen = 10 # split into rows of this length...
rowlen0 = rowlen
rowlen1 = rowlen
characters = dict()
if('level_min' in info):
level_min = int(info['level_min'])
else:
level_min = 1
if('level_max' in info):
level_max = int(info['level_max'])
else:
level_max = 50
if (level_max - level_min + 1) < rowlen:
rowlen0 = level_max - level_min + 1
if(info['list_chars'] != '0'):
char1 = 1
else:
char1 = 0
if(is_set['weight']):
weight = int(info['weight'])
else:
weight = 2
## setup the table
# print "char11=",char1
tbl = dict()
if(char1 == 1):
tbl['header'] = 'Dimension of \( S_{' + str(weight) + '}(N,\chi_{n})\)'
else:
tbl['header'] = 'Dimension of \( S_{' + str(weight) + '}(N)\)'
tbl['headersv'] = list()
tbl['headersh'] = list()
tbl['corner_label'] = ""
tbl['data'] = list()
tbl['data_format'] = 'html'
tbl['class'] = "dimension_table"
tbl['atts'] = "border=\"0\" class=\"data_table\""
num_rows = ceil(QQ(level_max - level_min + 1) / QQ(rowlen0))
print "num_rows=", num_rows
for i in range(1, rowlen0 + 1):
tbl['headersh'].append(i + level_min - 1)
for r in range(num_rows):
tbl['headersv'].append(r * rowlen0)
print "level_min=", level_min
print "level_max=", level_max
print "char=", char1
for r in range(num_rows):
row = list()
for k in range(1, rowlen0 + 1):
row.append("")
# print "row nr. ",r
for k in range(1, rowlen0 + 1):
N = level_min - 1 + r * rowlen0 + k
s = "<a name=\"#" + str(N) + "\"></a>"
# print "col ",k,"=",N
if(N > level_max or N < 1):
continue
if(char1 == 0):
d = dimension_cusp_forms(N, weight)
print "d=", d
if(make_link):
url = "?weight=" + str(weight) + "&level=" + str(N) + "&character=0"
row.append(s + "<a target=\"mainWindow\" href=\"" + url + "\">" + str(d) + "</a>")
else:
row.append(s + str(d))
# print "dim(",N,weight,")=",d
else:
D = DirichletGroup(N)
print "D=", D
s = "<a name=\"#" + str(N) + "\"></a>"
small_tbl = dict()
# small_tbl['header']='Dimension of \( S_{'+str(weight)+'}(N)\)'
small_tbl['headersv'] = ['\( d \)']
small_tbl['headersh'] = list()
small_tbl['corner_label'] = "\( n \)"
small_tbl['data'] = list()
small_tbl['atts'] = "border=\"1\" padding=\"1\""
small_tbl['data_format'] = 'html'
row1 = list()
# num_small_rows = ceil(QQ(level_max) / QQ(rowlen))
ii = 0
for chi in range(0, len(D.list())):
x = D[chi]
S = CuspForms(x, weight)
d = S.dimension()
if(d == 0):
continue
small_tbl['headersh'].append(chi)
if(make_link):
url = "?weight=" + str(weight) + "&level=" + str(N) + "&character=" + str(chi)
row1.append("<a target=\"mainWindow\" href=\"" + url + "\">" + str(d) + "</a>")
#.........这里部分代码省略.........
示例12: dimension_new_cusp_forms
def dimension_new_cusp_forms(self, k=2, eps=None, p=0, algorithm="CohenOesterle"):
r"""
Dimension of the new subspace (or `p`-new subspace) of cusp forms of
weight `k` and character `\varepsilon`.
INPUT:
- ``k`` - an integer (default: 2)
- ``eps`` - a Dirichlet character
- ``p`` - a prime (default: 0); just the `p`-new subspace if given
- ``algorithm`` - either "CohenOesterle" (the default) or "Quer". This
specifies the method to use in the case of nontrivial character:
either the Cohen--Oesterle formula as described in Stein's book, or
by Moebius inversion using the subgroups GammaH (a method due to
Jordi Quer).
EXAMPLES::
sage: G = DirichletGroup(9)
sage: eps = G.0^3
sage: eps.conductor()
3
sage: [Gamma1(9).dimension_new_cusp_forms(k, eps) for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [2..10]]
[0, 0, 0, 2, 0, 4, 0, 6, 0]
sage: [Gamma1(9).dimension_new_cusp_forms(k, eps, 3) for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
Double check using modular symbols (independent calculation)::
sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace().dimension() for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
sage: [ModularSymbols(eps,k,sign=1).cuspidal_subspace().new_subspace(3).dimension() for k in [2..10]]
[0, 0, 0, 2, 0, 2, 0, 2, 0]
Another example at level 33::
sage: G = DirichletGroup(33)
sage: eps = G.1
sage: eps.conductor()
11
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1) for k in [2..4]]
[0, 4, 0]
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1, algorithm="Quer") for k in [2..4]]
[0, 4, 0]
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2) for k in [2..4]]
[2, 0, 6]
sage: [Gamma1(33).dimension_new_cusp_forms(k, G.1^2, p=3) for k in [2..4]]
[2, 0, 6]
"""
if eps == None:
return GammaH_class.dimension_new_cusp_forms(self, k, p)
N = self.level()
eps = DirichletGroup(N)(eps)
from all import Gamma0
if eps.is_trivial():
return Gamma0(N).dimension_new_cusp_forms(k, p)
from congroup_gammaH import mumu
if p == 0 or N%p != 0 or eps.conductor().valuation(p) == N.valuation(p):
D = [eps.conductor()*d for d in divisors(N//eps.conductor())]
return sum([Gamma1_constructor(M).dimension_cusp_forms(k, eps.restrict(M), algorithm)*mumu(N//M) for M in D])
eps_p = eps.restrict(N//p)
old = Gamma1_constructor(N//p).dimension_cusp_forms(k, eps_p, algorithm)
return self.dimension_cusp_forms(k, eps, algorithm) - 2*old
示例13: dimension_eis
def dimension_eis(self, k=2, eps=None, algorithm="CohenOesterle"):
r"""
Return the dimension of the space of Eisenstein series forms for self,
or the dimension of the subspace corresponding to the given character
if one is supplied.
INPUT:
- ``k`` - an integer (default: 2), the weight.
- ``eps`` - either None or a Dirichlet character modulo N, where N is
the level of this group. If this is None, then the dimension of the
whole space is returned; otherwise, the dimension of the subspace of
Eisenstein series of character eps.
- ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
specifies the method to use in the case of nontrivial character:
either the Cohen--Oesterle formula as described in Stein's book, or
by Moebius inversion using the subgroups GammaH (a method due to
Jordi Quer).
AUTHORS:
- William Stein - Cohen--Oesterle algorithm
- Jordi Quer - algorithm based on GammaH subgroups
- David Loeffler (2009) - code refactoring
EXAMPLES:
The following two computations use different algorithms: ::
sage: [Gamma1(36).dimension_eis(1,eps) for eps in DirichletGroup(36)]
[0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]
sage: [Gamma1(36).dimension_eis(1,eps,algorithm="Quer") for eps in DirichletGroup(36)]
[0, 4, 3, 0, 0, 2, 6, 0, 0, 2, 3, 0]
So do these: ::
sage: [Gamma1(48).dimension_eis(3,eps) for eps in DirichletGroup(48)]
[0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
sage: [Gamma1(48).dimension_eis(3,eps,algorithm="Quer") for eps in DirichletGroup(48)]
[0, 12, 0, 4, 0, 8, 0, 4, 12, 0, 4, 0, 8, 0, 4, 0]
"""
from all import Gamma0
# first deal with special cases
if eps is None:
return GammaH_class.dimension_eis(self, k)
N = self.level()
eps = DirichletGroup(N)(eps)
if eps.is_trivial():
return Gamma0(N).dimension_eis(k)
# Note case of k = 0 and trivial character already dealt with separately, so k <= 0 here is valid:
if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()):
return ZZ(0)
if algorithm == "Quer":
n = eps.order()
dim = ZZ(0)
for d in n.divisors():
G = GammaH_constructor(N,(eps**d).kernel())
dim = dim + moebius(d)*G.dimension_eis(k)
return dim//phi(n)
elif algorithm == "CohenOesterle":
from sage.modular.dims import CohenOesterle
K = eps.base_ring()
j = 2-k
# We use the Cohen-Oesterle formula in a subtle way to
# compute dim M_k(N,eps) (see Ch. 6 of William Stein's book on
# computing with modular forms).
alpha = -ZZ( K(Gamma0(N).index()*(j-1)/ZZ(12)) + CohenOesterle(eps,j) )
if k == 1:
return alpha
else:
return alpha - self.dimension_cusp_forms(k, eps)
else: #algorithm not in ["CohenOesterle", "Quer"]:
raise ValueError, "Unrecognised algorithm in dimension_eis"
示例14: dimension_cusp_forms
def dimension_cusp_forms(self, k=2, eps=None, algorithm="CohenOesterle"):
r"""
Return the dimension of the space of cusp forms for self, or the
dimension of the subspace corresponding to the given character if one
is supplied.
INPUT:
- ``k`` - an integer (default: 2), the weight.
- ``eps`` - either None or a Dirichlet character modulo N, where N is
the level of this group. If this is None, then the dimension of the
whole space is returned; otherwise, the dimension of the subspace of
forms of character eps.
- ``algorithm`` -- either "CohenOesterle" (the default) or "Quer". This
specifies the method to use in the case of nontrivial character:
either the Cohen--Oesterle formula as described in Stein's book, or
by Moebius inversion using the subgroups GammaH (a method due to
Jordi Quer).
EXAMPLES:
We compute the same dimension in two different ways ::
sage: K = CyclotomicField(3)
sage: eps = DirichletGroup(7*43,K).0^2
sage: G = Gamma1(7*43)
Via Cohen--Oesterle: ::
sage: Gamma1(7*43).dimension_cusp_forms(2, eps)
28
Via Quer's method: ::
sage: Gamma1(7*43).dimension_cusp_forms(2, eps, algorithm="Quer")
28
Some more examples: ::
sage: G.<eps> = DirichletGroup(9)
sage: [Gamma1(9).dimension_cusp_forms(k, eps) for k in [1..10]]
[0, 0, 1, 0, 3, 0, 5, 0, 7, 0]
sage: [Gamma1(9).dimension_cusp_forms(k, eps^2) for k in [1..10]]
[0, 0, 0, 2, 0, 4, 0, 6, 0, 8]
"""
from all import Gamma0
# first deal with special cases
if eps is None:
return GammaH_class.dimension_cusp_forms(self, k)
N = self.level()
if eps.base_ring().characteristic() != 0:
raise ValueError
eps = DirichletGroup(N, eps.base_ring())(eps)
if eps.is_trivial():
return Gamma0(N).dimension_cusp_forms(k)
if (k <= 0) or ((k % 2) == 1 and eps.is_even()) or ((k%2) == 0 and eps.is_odd()):
return ZZ(0)
if k == 1:
try:
n = self.dimension_cusp_forms(1)
if n == 0:
return ZZ(0)
else: # never happens at present
raise NotImplementedError, "Computations of dimensions of spaces of weight 1 cusp forms not implemented at present"
except NotImplementedError:
raise
# now the main part
if algorithm == "Quer":
n = eps.order()
dim = ZZ(0)
for d in n.divisors():
G = GammaH_constructor(N,(eps**d).kernel())
dim = dim + moebius(d)*G.dimension_cusp_forms(k)
return dim//phi(n)
elif algorithm == "CohenOesterle":
K = eps.base_ring()
from sage.modular.dims import CohenOesterle
from all import Gamma0
return ZZ( K(Gamma0(N).index() * (k-1)/ZZ(12)) + CohenOesterle(eps,k) )
else: #algorithm not in ["CohenOesterle", "Quer"]:
raise ValueError, "Unrecognised algorithm in dimension_cusp_forms"
示例15: dimension_of_ordinary_subspace
def dimension_of_ordinary_subspace(self, p=None, cusp=False):
"""
If ``cusp`` is ``True``, return dimension of cuspidal ordinary
subspace. This does a weight 2 computation with sage's ModularSymbols.
EXAMPLES::
sage: M = OverconvergentModularSymbols(11, 0, sign=-1, p=3, prec_cap=4, base=ZpCA(3, 8))
sage: M.dimension_of_ordinary_subspace()
2
sage: M.dimension_of_ordinary_subspace(cusp=True)
2
sage: M = OverconvergentModularSymbols(11, 0, sign=1, p=3, prec_cap=4, base=ZpCA(3, 8))
sage: M.dimension_of_ordinary_subspace(cusp=True)
2
sage: M.dimension_of_ordinary_subspace()
4
sage: M = OverconvergentModularSymbols(11, 0, sign=0, p=3, prec_cap=4, base=ZpCA(3, 8))
sage: M.dimension_of_ordinary_subspace()
6
sage: M.dimension_of_ordinary_subspace(cusp=True)
4
sage: M = OverconvergentModularSymbols(11, 0, sign=1, p=11, prec_cap=4, base=ZpCA(11, 8))
sage: M.dimension_of_ordinary_subspace(cusp=True)
1
sage: M.dimension_of_ordinary_subspace()
2
sage: M = OverconvergentModularSymbols(11, 2, sign=1, p=11, prec_cap=4, base=ZpCA(11, 8))
sage: M.dimension_of_ordinary_subspace(cusp=True)
0
sage: M.dimension_of_ordinary_subspace()
1
sage: M = OverconvergentModularSymbols(11, 10, sign=1, p=11, prec_cap=4, base=ZpCA(11, 8))
sage: M.dimension_of_ordinary_subspace(cusp=True)
1
sage: M.dimension_of_ordinary_subspace()
2
An example with odd weight and hence non-trivial character::
sage: K = Qp(11, 6)
sage: DG = DirichletGroup(11, K)
sage: chi = DG([K(378703)])
sage: MM = FamiliesOfOMS(chi, 1, p=11, prec_cap=[4, 4], base_coeffs=ZpCA(11, 4), sign=-1)
sage: MM.dimension_of_ordinary_subspace()
1
"""
try:
p = self.prime()
except AttributeError:
if p is None:
raise ValueError("If self doesn't have a prime, must specify p.")
try:
return self._ord_dim_dict[(p, cusp)]
except AttributeError:
self._ord_dim_dict = {}
except KeyError:
pass
from sage.modular.dirichlet import DirichletGroup
from sage.rings.finite_rings.constructor import GF
try:
chi = self.character()
except AttributeError:
chi = DirichletGroup(self.level(), GF(p))[0]
if chi is None:
chi = DirichletGroup(self.level(), GF(p))[0]
from sage.modular.modsym.modsym import ModularSymbols
r = self.weight() % (p-1)
if chi.is_trivial():
N = chi.modulus()
if N % p != 0:
N *= p
else:
e = N.valuation(p)
N.divide_knowing_divisible_by(p ** (e-1))
chi = DirichletGroup(N, GF(p))[0]
elif chi.modulus() % p != 0:
chi = DirichletGroup(chi.modulus() * p, GF(p))(chi)
DG = DirichletGroup(chi.modulus(), GF(p))
if r == 0:
from sage.modular.arithgroup.congroup_gamma0 import Gamma0_constructor as Gamma0
verbose("in dim: %s, %s, %s"%(self.sign(), chi, p))
M = ModularSymbols(DG(chi), 2, self.sign(), GF(p))
else:
psi = [GF(p)(u) ** r for u in DG.unit_gens()] #mod p Teichmuller^r
psi = DG(psi)
M = ModularSymbols(DG(chi) * psi, 2, self.sign(), GF(p))
if cusp:
M = M.cuspidal_subspace()
hecke_poly = M.hecke_polynomial(p)
verbose("in dim: %s"%(hecke_poly))
x = hecke_poly.parent().gen()
d = hecke_poly.degree() - hecke_poly.ord(x)
self._ord_dim_dict[(p, cusp)] = d
return d