当前位置: 首页>>代码示例>>Python>>正文


Python Matrix.swap_rows方法代码示例

本文整理汇总了Python中sage.matrix.constructor.Matrix.swap_rows方法的典型用法代码示例。如果您正苦于以下问题:Python Matrix.swap_rows方法的具体用法?Python Matrix.swap_rows怎么用?Python Matrix.swap_rows使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.matrix.constructor.Matrix的用法示例。


在下文中一共展示了Matrix.swap_rows方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _normalize_2x2

# 需要导入模块: from sage.matrix.constructor import Matrix [as 别名]
# 或者: from sage.matrix.constructor.Matrix import swap_rows [as 别名]
def _normalize_2x2(G):
    r"""
    Normalize this indecomposable `2` by `2` block.

    INPUT:

    ``G`` - a `2` by `2` matrix over `\ZZ_p`
    with ``type = 'fixed-mod'`` of the form::

        [2a  b]
        [ b 2c] * 2^n

    with `b` of valuation 1.

    OUTPUT:

    A unimodular `2` by `2` matrix ``B`` over `\ZZ_p` with
    ``B * G * B.transpose()``
    either::

        [0 1]              [2 1]
        [1 0] * 2^n  or    [1 2] * 2^n

    EXAMPLES::

        sage: from sage.quadratic_forms.genera.normal_form import _normalize_2x2
        sage: R = Zp(2, prec = 15, type = 'fixed-mod', print_mode='series', show_prec=False)
        sage: G = Matrix(R, 2, [-17*2,3,3,23*2])
        sage: B =_normalize_2x2(G)
        sage: B * G * B.T
        [2 1]
        [1 2]

        sage: G = Matrix(R,2,[-17*4,3,3,23*2])
        sage: B = _normalize_2x2(G)
        sage: B*G*B.T
        [0 1]
        [1 0]

        sage: G = 2^3 * Matrix(R, 2, [-17*2,3,3,23*2])
        sage: B = _normalize_2x2(G)
        sage: B * G * B.T
        [2^4 2^3]
        [2^3 2^4]
    """
    from sage.rings.all import PolynomialRing
    from sage.modules.free_module_element import vector
    B = copy(G.parent().identity_matrix())
    R = G.base_ring()
    P = PolynomialRing(R, 'x')
    x = P.gen()

    # The input must be an even block
    odd1 = (G[0, 0].valuation() < G[1, 0].valuation())
    odd2 = (G[1, 1].valuation() < G[1, 0].valuation())
    if  odd1 or odd2:
            raise ValueError("Not a valid 2 x 2 block.")
    scale = 2 ** G[0,1].valuation()
    D = Matrix(R, 2, 2, [d // scale for d in G.list()])
    # now D is of the form
    # [2a b ]
    # [b  2c]
    # where b has valuation 1.
    G = copy(D)

    # Make sure G[1, 1] has valuation 1.
    if D[1, 1].valuation() > D[0, 0].valuation():
        B.swap_columns(0, 1)
        D.swap_columns(0, 1)
        D.swap_rows(0, 1)
    if D[1, 1].valuation() != 1:
        # this works because
        # D[0, 0] has valuation at least 2
        B[1, :] += B[0, :]
        D = B * G * B.transpose()
    assert D[1, 1].valuation() == 1

    if mod(D.det(), 8) == 3:
        #  in this case we can transform D to
        #  2 1
        #  1 2
        # Find a point of norm 2
        # solve: 2 == D[1,1]*x^2 + 2*D[1,0]*x + D[0,0]
        pol = (D[1,1]*x**2 + 2*D[1,0]*x + D[0,0]-2) // 2
        # somehow else pari can get a hickup see `trac`:#24065
        pol = pol // pol.leading_coefficient()
        sol = pol.roots()[0][0]
        B[0, 1] = sol
        D = B * G * B.transpose()
        # make D[0, 1] = 1
        B[1, :] *= D[1, 0].inverse_of_unit()
        D = B * G * B.transpose()

        # solve: v*D*v == 2 with v = (x, -2*x+1)
        if D[1, 1] != 2:
            v = vector([x, -2*x + 1])
            pol = (v*D*v - 2) // 2
            # somehow else pari can get a hickup `trac`:#24065
            pol = pol // pol.leading_coefficient()
            sol = pol.roots()[0][0]
#.........这里部分代码省略.........
开发者ID:saraedum,项目名称:sage-renamed,代码行数:103,代码来源:normal_form.py


注:本文中的sage.matrix.constructor.Matrix.swap_rows方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。