当前位置: 首页>>代码示例>>Python>>正文


Python Matrix.solve_left方法代码示例

本文整理汇总了Python中sage.matrix.constructor.Matrix.solve_left方法的典型用法代码示例。如果您正苦于以下问题:Python Matrix.solve_left方法的具体用法?Python Matrix.solve_left怎么用?Python Matrix.solve_left使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.matrix.constructor.Matrix的用法示例。


在下文中一共展示了Matrix.solve_left方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from sage.matrix.constructor import Matrix [as 别名]
# 或者: from sage.matrix.constructor.Matrix import solve_left [as 别名]

#.........这里部分代码省略.........

        EXAMPLES::

        First we set up AssociatedFactors building a tower of extensions::

            sage: from sage.rings.polynomial.padics.factor.factoring import OM_tree
            sage: k = ZpFM(2,20,'terse'); kx.<x> = k[]
            sage: t = OM_tree(x^4+20*x^3+44*x^2+80*x+1040)
            sage: t[0].prev
            AssociatedFactor of rho z^2 + z + 1
            sage: t[0].polygon[0].factors[0]
            AssociatedFactor of rho z0^2 + a0*z0 + 1

        Then we take elements in the different finite fields and represent
        them as vectors over their base residue field::

            sage: K.<a0> = t[0].prev.FF;K
            Finite Field in a0 of size 2^2
            sage: t[0].prev.FF_elt_to_FFbase_vector(a0+1)
            [1, 1]
            sage: L.<a1> = t[0].polygon[0].factors[0].FF;L
            Finite Field in a1 of size 2^4
            sage: t[0].polygon[0].factors[0].FF_elt_to_FFbase_vector(a1)         
            [1, a0 + 1]

        """
        if self.segment.frame.is_first() and self.Fplus == 1:
            return a
        elif self.Fplus == 1:
            return self.segment.frame.prev.FF_elt_to_FFbase_vector(a)
        else:
            basedeg = self.FFbase.degree()
            avec = self.FF(a)._vector_()
            svector = self.basis_trans_mat.solve_left(Matrix(self.FF.prime_subfield(),avec))
            s_list = svector.list()
            s_split = [ s_list[i*basedeg:(i+1)*basedeg] for i in range(0,self.Fplus)]
            s = [sum([ss[i]*self.FFbase.gen()**i for i in range(0,len(ss))]) for ss in s_split]
            return s

    def FFbase_elt_to_FF(self,b):
        """
        Lifts an element up from the previous residue field to the current
        extended residue field.

        INPUT:

        - ``b`` -- Element in the previous residue field.

        OUTPUT:

        - An element in the current extended residue field.

        EXAMPLES::

        First we set up AssociatedFactors building a tower of extensions::

            sage: from sage.rings.polynomial.padics.factor.factoring import OM_tree
            sage: k = ZpFM(2,20,'terse'); kx.<x> = k[]
            sage: t = OM_tree(x^4+20*x^3+44*x^2+80*x+1040)

        Then we take elements in the different finite fields and lift them
        to the next residue field upward in the extension tower::

            sage: K.<a0> = t[0].prev.FF;K
            Finite Field in a0 of size 2^2
            sage: L.<a1> = t[0].polygon[0].factors[0].FF;L
开发者ID:haikona,项目名称:PAPOLYFAC,代码行数:70,代码来源:associatedfactor.py


注:本文中的sage.matrix.constructor.Matrix.solve_left方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。