当前位置: 首页>>代码示例>>Python>>正文


Python Matrix.denominator方法代码示例

本文整理汇总了Python中sage.matrix.constructor.Matrix.denominator方法的典型用法代码示例。如果您正苦于以下问题:Python Matrix.denominator方法的具体用法?Python Matrix.denominator怎么用?Python Matrix.denominator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.matrix.constructor.Matrix的用法示例。


在下文中一共展示了Matrix.denominator方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_cocycle_from_elliptic_curve

# 需要导入模块: from sage.matrix.constructor import Matrix [as 别名]
# 或者: from sage.matrix.constructor.Matrix import denominator [as 别名]
    def get_cocycle_from_elliptic_curve(self,E,sign = 1,use_magma = True):
        if sign == 0:
            return self.get_cocycle_from_elliptic_curve(E,1,use_magma) + self.get_cocycle_from_elliptic_curve(E,-1,use_magma)
        if not sign in [1, -1]:
            raise NotImplementedError
        F = self.group().base_ring()
        if F.signature()[1] == 0 or (F.signature() == (0,1) and 'G' not in self.group()._grouptype):
            K = (self.hecke_matrix(oo).transpose()-sign).kernel().change_ring(QQ)
        else:
            K = Matrix(QQ,self.dimension(),self.dimension(),0).kernel()
        disc = self.S_arithgroup().Gpn._O_discriminant
        discnorm = disc.norm()
        try:
            N = ZZ(discnorm.gen())
        except AttributeError:
            N = ZZ(discnorm)

        if F == QQ:
            x = QQ['x'].gen()
            F = NumberField(x,names='a')
            E = E.change_ring(F)

        def getap(q):
            if F == QQ:
                return E.ap(q)
            else:
                Q = F.ideal(q).factor()[0][0]
                return ZZ(Q.norm() + 1 - E.reduction(Q).count_points())

        q = ZZ(1)
        g0 = None
        while K.dimension() > 1:
            q = q.next_prime()
            for qq,e in F.ideal(q).factor():
                if  ZZ(qq.norm()).is_prime() and not qq.divides(F.ideal(disc.gens_reduced()[0])):
                    try:
                        ap = getap(qq)
                    except (ValueError,ArithmeticError):
                        continue
                    try:
                        K1 = (self.hecke_matrix(qq.gens_reduced()[0],g0 = g0,use_magma = use_magma).transpose()-ap).kernel()
                    except RuntimeError:
                        continue
                    K = K.intersection(K1)
        if K.dimension() != 1:
            raise ValueError,'Did not obtain a one-dimensional space corresponding to E'
        col = [ZZ(o) for o in (K.denominator()*K.matrix()).list()]
        return sum([a * self.gen(i) for i,a in enumerate(col) if a != 0],self(0))
开发者ID:mmasdeu,项目名称:darmonpoints,代码行数:50,代码来源:cohomology_arithmetic.py

示例2: get_rational_cocycle_from_ap

# 需要导入模块: from sage.matrix.constructor import Matrix [as 别名]
# 或者: from sage.matrix.constructor.Matrix import denominator [as 别名]
    def get_rational_cocycle_from_ap(self,getap,sign = 1,use_magma = True):
        F = self.group().base_ring()
        if F.signature()[1] == 0 or (F.signature() == (0,1) and 'G' not in self.group()._grouptype):
            K = (self.hecke_matrix(oo).transpose()-sign).kernel().change_ring(QQ)
        else:
            K = Matrix(QQ,self.dimension(),self.dimension(),0).kernel()

        disc = self.S_arithgroup().Gpn._O_discriminant
        discnorm = disc.norm()
        try:
            N = ZZ(discnorm.gen())
        except AttributeError:
            N = ZZ(discnorm)

        if F == QQ:
            x = QQ['x'].gen()
            F = NumberField(x,names='a')
        q = ZZ(1)
        g0 = None
        while K.dimension() > 1:
            q = q.next_prime()
            for qq,e in F.ideal(q).factor():
                if  ZZ(qq.norm()).is_prime() and not qq.divides(F.ideal(disc.gens_reduced()[0])):
                    try:
                        ap = getap(qq)
                    except (ValueError,ArithmeticError):
                        continue
                    try:
                        K1 = (self.hecke_matrix(qq.gens_reduced()[0],g0 = g0,use_magma = use_magma).transpose()-ap).kernel()
                    except RuntimeError:
                        continue
                    K = K.intersection(K1)
        if K.dimension() != 1:
            raise ValueError,'Group does not have the required system of eigenvalues'

        col = [ZZ(o) for o in (K.denominator()*K.matrix()).list()]
        return sum([ a * self.gen(i) for i,a in enumerate(col) if a != 0], self(0))
开发者ID:mmasdeu,项目名称:darmonpoints,代码行数:39,代码来源:cohomology_arithmetic.py

示例3: get_rational_cocycle

# 需要导入模块: from sage.matrix.constructor import Matrix [as 别名]
# 或者: from sage.matrix.constructor.Matrix import denominator [as 别名]
    def get_rational_cocycle(self,sign = 1,use_magma = True,bound = 3, return_all = False):
        F = self.group().base_ring()
        if F.signature()[1] == 0 or (F.signature()[1] == 1 and 'G' not in self.group()._grouptype):
            K = (self.hecke_matrix(oo).transpose()-sign).kernel().change_ring(QQ)
        else:
            K = Matrix(QQ,self.dimension(),self.dimension(),0).kernel()

        component_list = []
        good_components = []
        if K.dimension() == 1:
            good_components.append(K)
        else:
            component_list.append(K)

        disc = self.S_arithgroup().Gpn._O_discriminant
        discnorm = disc.norm()
        try:
            N = ZZ(discnorm.gen())
        except AttributeError:
            N = ZZ(discnorm)

        if F == QQ:
            x = QQ['x'].gen()
            F = NumberField(x,names='a')
        q = ZZ(1)
        g0 = None
        num_hecke_operators = 0
        while len(component_list) > 0 and num_hecke_operators < bound:
            verbose('num_hecke_ops = %s'%num_hecke_operators)
            verbose('len(components_list) = %s'%len(component_list))
            q = q.next_prime()
            for qq,e in F.ideal(q).factor():
                if  ZZ(qq.norm()).is_prime() and not qq.divides(F.ideal(disc.gens_reduced()[0])):
                    try:
                        Aq = self.hecke_matrix(qq.gens_reduced()[0],g0 = g0,use_magma = use_magma).transpose().change_ring(QQ)
                    except (RuntimeError,TypeError) as e:
                        continue
                    verbose('Computed hecke matrix at qq = %s'%qq)
                    old_component_list = component_list
                    component_list = []
                    num_hecke_operators += 1
                    for U in old_component_list:
                        V = Aq.decomposition_of_subspace(U)
                        for U0,is_irred in V:
                            if Aq.restrict(U0).eigenvalues()[0] == ZZ(qq.norm()) + 1:
                                continue # Do not take Eisenstein classes.
                            if U0.dimension() == 1:
                                good_components.append(U0)
                            elif is_irred:
                                # Bad
                                continue
                            else: # U0.dimension() > 1 and not is_irred
                                component_list.append(U0)
                    if len(good_components) > 0 and not return_all:
                        K = good_components[0]
                        col = [ZZ(o) for o in (K.denominator()*K.matrix()).list()]
                        return sum([a*self.gen(i) for i,a in enumerate(col) if a != 0],self(0))
                    if len(component_list) == 0 or num_hecke_operators >= bound:
                        break

        if len(good_components) == 0:
            raise ValueError('Group does not seem to be attached to an elliptic curve')
        else:
            if return_all:
                ans = []
                for K in good_components:
                    col = [ZZ(o) for o in (K.denominator()*K.matrix()).list()]
                    ans.append( sum([a*self.gen(i) for i,a in enumerate(col) if a != 0],self(0)))
                return ans
            else:
                K = good_components[0]
                col = [ZZ(o) for o in (K.denominator()*K.matrix()).list()]
                return sum([ a * self.gen(i) for i,a in enumerate(col) if a != 0], self(0))
开发者ID:mmasdeu,项目名称:darmonpoints,代码行数:75,代码来源:cohomology_arithmetic.py


注:本文中的sage.matrix.constructor.Matrix.denominator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。