当前位置: 首页>>代码示例>>Python>>正文


Python Matrix.right_kernel方法代码示例

本文整理汇总了Python中sage.matrix.constructor.Matrix.right_kernel方法的典型用法代码示例。如果您正苦于以下问题:Python Matrix.right_kernel方法的具体用法?Python Matrix.right_kernel怎么用?Python Matrix.right_kernel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.matrix.constructor.Matrix的用法示例。


在下文中一共展示了Matrix.right_kernel方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Conic

# 需要导入模块: from sage.matrix.constructor import Matrix [as 别名]
# 或者: from sage.matrix.constructor.Matrix import right_kernel [as 别名]

#.........这里部分代码省略.........
        if names is None:
            names = F
        F = base_field
        base_field = None
    if isinstance(F, (list,tuple)):
        if len(F) == 1:
            return Conic(base_field, F[0], names)
        if names == None:
            names = 'x,y,z'
        if len(F) == 5:
            L=[]
            for f in F:
                if isinstance(f, SchemeMorphism_point_affine):
                    C = Sequence(f, universe = base_field)
                    if len(C) != 2:
                        raise TypeError, "points in F (=%s) must be planar"%F
                    C.append(1)
                elif isinstance(f, SchemeMorphism_point_projective_field):
                    C = Sequence(f, universe = base_field)
                elif isinstance(f, (list, tuple)):
                    C = Sequence(f, universe = base_field)
                    if len(C) == 2:
                        C.append(1)
                else:
                    raise TypeError, "F (=%s) must be a sequence of planar " \
                                      "points" % F
                if len(C) != 3:
                    raise TypeError, "points in F (=%s) must be planar" % F
                P = C.universe()
                if not is_IntegralDomain(P):
                    raise TypeError, "coordinates of points in F (=%s) must " \
                                     "be in an integral domain" % F
                L.append(Sequence([C[0]**2, C[0]*C[1], C[0]*C[2], C[1]**2,
                                   C[1]*C[2], C[2]**2], P.fraction_field()))
            M=Matrix(L)
            if unique and M.rank() != 5:
                raise ValueError, "points in F (=%s) do not define a unique " \
                                   "conic" % F
            con = Conic(base_field, Sequence(M.right_kernel().gen()), names)
            con.point(F[0])
            return con
        F = Sequence(F, universe = base_field)
        base_field = F.universe().fraction_field()
        temp_ring = PolynomialRing(base_field, 3, names)
        (x,y,z) = temp_ring.gens()
        if len(F) == 3:
            return Conic(F[0]*x**2 + F[1]*y**2 + F[2]*z**2)
        if len(F) == 6:
            return Conic(F[0]*x**2 + F[1]*x*y + F[2]*x*z + F[3]*y**2 + \
                         F[4]*y*z + F[5]*z**2)
        raise TypeError, "F (=%s) must be a sequence of 3 or 6" \
                         "coefficients" % F
    if is_QuadraticForm(F):
        F = F.matrix()
    if is_Matrix(F) and F.is_square() and F.ncols() == 3:
        if names == None:
            names = 'x,y,z'
        temp_ring = PolynomialRing(F.base_ring(), 3, names)
        F = vector(temp_ring.gens()) * F * vector(temp_ring.gens())

    if not is_MPolynomial(F):
        raise TypeError, "F (=%s) must be a three-variable polynomial or " \
                         "a sequence of points or coefficients" % F

    if F.total_degree() != 2:
        raise TypeError, "F (=%s) must have degree 2" % F

    if base_field == None:
        base_field = F.base_ring()
    if not is_IntegralDomain(base_field):
        raise ValueError, "Base field (=%s) must be a field" % base_field
    base_field = base_field.fraction_field()
    if names == None:
        names = F.parent().variable_names()
    pol_ring = PolynomialRing(base_field, 3, names)

    if F.parent().ngens() == 2:
        (x,y,z) = pol_ring.gens()
        F = pol_ring(F(x/z,y/z)*z**2)

    if F == 0:
        raise ValueError, "F must be nonzero over base field %s" % base_field

    if F.total_degree() != 2:
        raise TypeError, "F (=%s) must have degree 2 over base field %s" % \
                          (F, base_field)

    if F.parent().ngens() == 3:
        P2 = ProjectiveSpace(2, base_field, names)
        if is_PrimeFiniteField(base_field):
            return ProjectiveConic_prime_finite_field(P2, F)
        if is_FiniteField(base_field):
            return ProjectiveConic_finite_field(P2, F)
        if is_RationalField(base_field):
            return ProjectiveConic_rational_field(P2, F)
        if is_NumberField(base_field):
            return ProjectiveConic_number_field(P2, F)
        return ProjectiveConic_field(P2, F)

    raise TypeError, "Number of variables of F (=%s) must be 2 or 3" % F
开发者ID:CETHop,项目名称:sage,代码行数:104,代码来源:constructor.py

示例2: HarmonicCocycles

# 需要导入模块: from sage.matrix.constructor import Matrix [as 别名]
# 或者: from sage.matrix.constructor.Matrix import right_kernel [as 别名]

#.........这里部分代码省略.........
        - Cameron Franc (2012-02-20)
        - Marc Masdeu (2012-02-20)
        """
        try: return self.__matrix
        except AttributeError: pass
        nV=len(self._V)
        nE=len(self._E)
        stab_conds=[]
        S=self._X.get_edge_stabs()
        p=self._X._p
        d=self._k-1
        for e in self._E:
            try:
                g=filter(lambda g:g[2],S[e.label])[0]
                C=self._U.l_matrix_representation(self.embed_quaternion(g[0]))
                C-=self._U.l_matrix_representation(Matrix(QQ,2,2,p**g[1]))
                stab_conds.append([e.label,C])
            except IndexError: pass

        n_stab_conds=len(stab_conds)
        self._M=Matrix(self._R,(nV+n_stab_conds)*d,nE*d,0,sparse=True)
        for v in self._V:
            for e in filter(lambda e:e.parity==0,v.leaving_edges):
                C=sum([self._U.l_matrix_representation(self.embed_quaternion(x[0])) for x in e.links],Matrix(self._R,d,d,0))
                self._M.set_block(v.label*d,e.label*d,C)
            for e in filter(lambda e:e.parity==0,v.entering_edges):
                C=sum([self._U.l_matrix_representation(self.embed_quaternion(x[0])) for x in e.opposite.links],Matrix(self._R,d,d,0))
                self._M.set_block(v.label*d,e.opposite.label*d,C)

        for kk in range(n_stab_conds):
            v=stab_conds[kk]
            self._M.set_block((nV+kk)*d,v[0]*d,v[1])

        x1=self._M.right_kernel().matrix()

        if x1.nrows() != self.rank():
            raise RuntimeError, 'The computed dimension does not agree with the expectation. Consider increasing precision!'

        K=[c for c in x1.rows()]

        if not self._R.is_exact():
            for ii in range(len(K)):
                s=min([t.valuation() for t in K[ii]])
                for jj in range(len(K[ii])):
                    K[ii][jj]=(p**(-s))*K[ii][jj]

        self.__matrix=Matrix(self._R,len(K),nE*d,K)
        self.__matrix.set_immutable()
        return self.__matrix

    def __apply_atkin_lehner(self,q,f):
        r"""
        This function applies an Atkin-Lehner involution to a harmonic cocycle

        INPUT:

          - ``q`` - an integer dividing the full level p*Nminus*Nplus

          - ``f`` - a harmonic cocycle

        OUTPUT:

          The harmonic cocycle obtained by hitting f with the Atkin-Lehner at q

        EXAMPLES:
        ::
开发者ID:williamstein,项目名称:OMS,代码行数:70,代码来源:pautomorphicform.py


注:本文中的sage.matrix.constructor.Matrix.right_kernel方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。