本文整理汇总了Python中sage.graphs.digraph.DiGraph.topological_sort方法的典型用法代码示例。如果您正苦于以下问题:Python DiGraph.topological_sort方法的具体用法?Python DiGraph.topological_sort怎么用?Python DiGraph.topological_sort使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.graphs.digraph.DiGraph
的用法示例。
在下文中一共展示了DiGraph.topological_sort方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Hasse_diagram_from_incidences
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import topological_sort [as 别名]
#.........这里部分代码省略.........
and we can compute the Hasse diagram as ::
sage: L = sage.geometry.cone.Hasse_diagram_from_incidences(
... atom_to_coatoms, coatom_to_atoms)
sage: L
Finite poset containing 8 elements with distinguished linear extension
sage: for level in L.level_sets(): print(level)
[((), (0, 1, 2))]
[((0,), (0, 1)), ((1,), (0, 2)), ((2,), (1, 2))]
[((0, 1), (0,)), ((0, 2), (1,)), ((1, 2), (2,))]
[((0, 1, 2), ())]
For more involved examples see the *source code* of
:meth:`sage.geometry.cone.ConvexRationalPolyhedralCone.face_lattice` and
:meth:`sage.geometry.fan.RationalPolyhedralFan._compute_cone_lattice`.
"""
from sage.graphs.digraph import DiGraph
from sage.combinat.posets.posets import FinitePoset
def default_face_constructor(atoms, coatoms, **kwds):
return (atoms, coatoms)
if face_constructor is None:
face_constructor = default_face_constructor
atom_to_coatoms = [frozenset(atc) for atc in atom_to_coatoms]
A = frozenset(range(len(atom_to_coatoms))) # All atoms
coatom_to_atoms = [frozenset(cta) for cta in coatom_to_atoms]
C = frozenset(range(len(coatom_to_atoms))) # All coatoms
# Comments with numbers correspond to steps in Section 2.5 of the article
L = DiGraph(1) # 3: initialize L
faces = dict()
atoms = frozenset()
coatoms = C
faces[atoms, coatoms] = 0
next_index = 1
Q = [(atoms, coatoms)] # 4: initialize Q with the empty face
while Q: # 5
q_atoms, q_coatoms = Q.pop() # 6: remove some q from Q
q = faces[q_atoms, q_coatoms]
# 7: compute H = {closure(q+atom) : atom not in atoms of q}
H = dict()
candidates = set(A.difference(q_atoms))
for atom in candidates:
coatoms = q_coatoms.intersection(atom_to_coatoms[atom])
atoms = A
for coatom in coatoms:
atoms = atoms.intersection(coatom_to_atoms[coatom])
H[atom] = (atoms, coatoms)
# 8: compute the set G of minimal sets in H
minimals = set([])
while candidates:
candidate = candidates.pop()
atoms = H[candidate][0]
if atoms.isdisjoint(candidates) and atoms.isdisjoint(minimals):
minimals.add(candidate)
# Now G == {H[atom] : atom in minimals}
for atom in minimals: # 9: for g in G:
g_atoms, g_coatoms = H[atom]
if not required_atoms is None:
if g_atoms.isdisjoint(required_atoms):
continue
if (g_atoms, g_coatoms) in faces:
g = faces[g_atoms, g_coatoms]
else: # 11: if g was newly created
g = next_index
faces[g_atoms, g_coatoms] = g
next_index += 1
Q.append((g_atoms, g_coatoms)) # 12
L.add_edge(q, g) # 14
# End of algorithm, now construct a FinitePoset.
# In principle, it is recommended to use Poset or in this case perhaps
# even LatticePoset, but it seems to take several times more time
# than the above computation, makes unnecessary copies, and crashes.
# So for now we will mimic the relevant code from Poset.
# Enumeration of graph vertices must be a linear extension of the poset
new_order = L.topological_sort()
# Make sure that coatoms are in the end in proper order
tail = [faces[atoms, frozenset([coatom])]
for coatom, atoms in enumerate(coatom_to_atoms)]
tail.append(faces[A, frozenset()])
new_order = [n for n in new_order if n not in tail] + tail
# Make sure that atoms are in the beginning in proper order
head = [0] # We know that the empty face has index 0
head.extend(faces[frozenset([atom]), coatoms]
for atom, coatoms in enumerate(atom_to_coatoms)
if required_atoms is None or atom in required_atoms)
new_order = head + [n for n in new_order if n not in head]
# "Invert" this list to a dictionary
labels = dict()
for new, old in enumerate(new_order):
labels[old] = new
L.relabel(labels)
# Construct the actual poset elements
elements = [None] * next_index
for face, index in faces.items():
atoms, coatoms = face
elements[labels[index]] = face_constructor(
tuple(sorted(atoms)), tuple(sorted(coatoms)), **kwds)
D = {i:f for i,f in enumerate(elements)}
L.relabel(D)
return FinitePoset(L, elements, key = key)
示例2: ParentBigOh
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import topological_sort [as 别名]
class ParentBigOh(Parent,UniqueRepresentation):
def __init__(self,ambiant):
try:
self._uniformizer = ambiant.uniformizer_name()
except NotImplementedError:
raise TypeError("Impossible to determine the name of the uniformizer")
self._ambiant_space = ambiant
self._models = DiGraph(loops=False)
self._default_model = None
Parent.__init__(self,ambiant.base_ring())
if self.base_ring() is None:
self._base_precision = None
else:
if self.base_ring() == ambiant:
self._base_precision = self
else:
self._base_precision = ParentBigOh(self.base_ring())
def __hash__(self):
return id(self)
def base_precision(self):
return self._base_precision
def precision(self):
return self._precision
def default_model(self):
if self._default_mode is None:
self.set_default_model()
return self._default_model
def set_default_model(self,model=None):
if model is None:
self._default_model = self._models.topological_sort()[-1]
else:
if self._models.has_vertex(model):
self._default_model = model
else:
raise ValueError
def add_model(self,model):
from bigoh import BigOh
if not isinstance(model,list):
model = [model]
for m in model:
if not issubclass(m,BigOh):
raise TypeError("A precision model must derive from BigOh but '%s' is not"%m)
self._models.add_vertex(m)
def delete_model(self,model):
if isinstance(model,list):
model = [model]
for m in model:
if self._models.has_vertex(m):
self._models.delete_vertex(m)
def update_model(self,old,new):
from bigoh import BigOh
if self._models.has_vertex(old):
if not issubclass(new,BigOh):
raise TypeError("A precision model must derive from BigOh but '%s' is not"%new)
self._models.relabel({old:new})
else:
raise ValueError("Model '%m' does not exist"%old)
def add_modelconversion(self,domain,codomain,constructor=None,safemode=False):
if not self._models.has_vertex(domain):
if safemode: return
raise ValueError("Model '%s' does not exist"%domain)
if not self._models.has_vertex(codomain):
if safemode: return
raise ValueError("Model '%s' does not exist"%codomain)
path = self._models.shortest_path(codomain,domain)
if len(path) > 0:
raise ValueError("Adding this conversion creates a cycle")
self._models.add_edge(domain,codomain,constructor)
def delete_modelconversion(self,domain,codomain):
if not self._models.has_vertex(domain):
raise ValueError("Model '%s' does not exist"%domain)
if not self._models.has_vertex(codomain):
raise ValueError("Model '%s' does not exist"%codomain)
if not self._models_has_edge(domain,codomain):
raise ValueError("No conversion from %s to %s"%(domain,codomain))
self._modelfs.delete_edge(domain,codomain)
def uniformizer_name(self):
return self._uniformizer
def ambiant_space(self):
return self._ambiant_space
# ?!?
def __call__(self,*args,**kwargs):
return self._element_constructor_(*args,**kwargs)
def _element_constructor_(self, *args, **kwargs):
if kwargs.has_key('model'):
del kwargs['model']
#.........这里部分代码省略.........