本文整理汇总了Python中sage.graphs.digraph.DiGraph.relabel方法的典型用法代码示例。如果您正苦于以下问题:Python DiGraph.relabel方法的具体用法?Python DiGraph.relabel怎么用?Python DiGraph.relabel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.graphs.digraph.DiGraph
的用法示例。
在下文中一共展示了DiGraph.relabel方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import relabel [as 别名]
def plot(self, label_elements=True, element_labels=None,
label_font_size=12,label_font_color='black', layout = "acyclic", **kwds):
"""
Returns a Graphics object corresponding to the Hasse diagram.
EXAMPLES::
sage: uc = [[2,3], [], [1], [1], [1], [3,4]]
sage: elm_lbls = Permutations(3).list()
sage: P = Poset(uc,elm_lbls)
sage: H = P._hasse_diagram
sage: levels = H.level_sets()
sage: heights = dict([[i, levels[i]] for i in range(len(levels))])
sage: type(H.plot(label_elements=True))
<class 'sage.plot.graphics.Graphics'>
::
sage: P = Posets.SymmetricGroupBruhatIntervalPoset([1,2,3,4], [3,4,1,2])
sage: P._hasse_diagram.plot()
"""
# Set element_labels to default to the vertex set.
if element_labels is None:
element_labels = range(self.num_verts())
# Create the underlying graph.
graph = DiGraph(self)
graph.relabel(element_labels)
return graph.plot(layout = layout, **kwds)
示例2: relabel
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import relabel [as 别名]
def relabel(self, relabelling, inplace=False, **kwds):
"""
Return the relabelling Dynkin diagram of ``self``.
EXAMPLES::
sage: D = DynkinDiagram(['C',3])
sage: D.relabel({1:0, 2:4, 3:1})
O---O=<=O
0 4 1
C3 relabelled by {1: 0, 2: 4, 3: 1}
sage: D
O---O=<=O
1 2 3
C3
"""
if inplace:
DiGraph.relabel(self, relabelling, inplace, **kwds)
G = self
else:
# We must make a copy of ourselves first because of DiGraph's
# relabel default behavior is to do so in place, and if not
# then it recurses on itself with no argument for inplace
G = self.copy().relabel(relabelling, inplace=True, **kwds)
if self._cartan_type is not None:
G._cartan_type = self._cartan_type.relabel(relabelling)
return G
示例3: bhz_poset
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import relabel [as 别名]
def bhz_poset(self):
r"""
Return the Bergeron-Hohlweg-Zabrocki partial order on the Coxeter
group.
This is a partial order on the elements of a finite
Coxeter group `W`, which is distinct from the Bruhat
order, the weak order and the shard intersection order. It
was defined in [BHZ05]_.
This partial order is not a lattice, as there is no unique
maximal element. It can be succintly defined as follows.
Let `u` and `v` be two elements of the Coxeter group `W`. Let
`S(u)` be the support of `u`. Then `u \leq v` if and only
if `v_{S(u)} = u` (here `v = v^I v_I` denotes the usual
parabolic decomposition with respect to the standard parabolic
subgroup `W_I`).
.. SEEALSO::
:meth:`bruhat_poset`, :meth:`shard_poset`, :meth:`weak_poset`
EXAMPLES::
sage: W = CoxeterGroup(['A',3], base_ring=ZZ)
sage: P = W.bhz_poset(); P
Finite poset containing 24 elements
sage: P.relations_number()
103
sage: P.chain_polynomial()
34*q^4 + 90*q^3 + 79*q^2 + 24*q + 1
sage: len(P.maximal_elements())
13
REFERENCE:
.. [BHZ05] \N. Bergeron, C. Hohlweg, and M. Zabrocki, *Posets
related to the Connectivity Set of Coxeter Groups*.
:arxiv:`math/0509271v3`
"""
from sage.graphs.digraph import DiGraph
from sage.combinat.posets.posets import Poset
def covered_by(ux, vy):
u, iu, Su = ux
v, iv, Sv = vy
if len(Sv) != len(Su) + 1:
return False
if not all(u in Sv for u in Su):
return False
return all((v * iu).has_descent(x, positive=True) for x in Su)
vertices = [(u, u.inverse(),
tuple(set(u.reduced_word_reverse_iterator())))
for u in self]
dg = DiGraph([vertices, covered_by])
dg.relabel(lambda x: x[0])
return Poset(dg, cover_relations=True)
示例4: relabel
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import relabel [as 别名]
def relabel(self, relabelling, inplace=False, **kwds):
"""
Return the relabelling Dynkin diagram of ``self``.
EXAMPLES::
sage: D = DynkinDiagram(['C',3])
sage: D.relabel({1:0, 2:4, 3:1})
O---O=<=O
0 4 1
C3 relabelled by {1: 0, 2: 4, 3: 1}
sage: D
O---O=<=O
1 2 3
C3
sage: D = DynkinDiagram(['A', [1,2]])
sage: Dp = D.relabel({-1:4, 0:-3, 1:3, 2:2}); Dp
O---X---O---O
4 -3 3 2
A1|2 relabelled by {0: -3, 1: 3, 2: 2, -1: 4}
sage: Dp.odd_isotropic_roots()
(-3,)
"""
if inplace:
DiGraph.relabel(self, relabelling, inplace, **kwds)
G = self
else:
# We must make a copy of ourselves first because of DiGraph's
# relabel default behavior is to do so in place, and if not
# then it recurses on itself with no argument for inplace
G = self.copy().relabel(relabelling, inplace=True, **kwds)
if isinstance(relabelling, dict):
relabelling = relabelling.__getitem__
new_odds = [relabelling(i) for i in self._odd_isotropic_roots]
G._odd_isotropic_roots = tuple(new_odds)
if self._cartan_type is not None:
G._cartan_type = self._cartan_type.relabel(relabelling)
return G
示例5: relabel
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import relabel [as 别名]
def relabel(self, *args, **kwds):
"""
Return the relabelled Dynkin diagram of ``self``.
INPUT: see :meth:`~sage.graphs.generic_graph.GenericGraph.relabel`
There is one difference: the default value for ``inplace`` is
``False`` instead of ``True``.
EXAMPLES::
sage: D = DynkinDiagram(['C',3])
sage: D.relabel({1:0, 2:4, 3:1})
O---O=<=O
0 4 1
C3 relabelled by {1: 0, 2: 4, 3: 1}
sage: D
O---O=<=O
1 2 3
C3
sage: _ = D.relabel({1:0, 2:4, 3:1}, inplace=True)
sage: D
O---O=<=O
0 4 1
C3 relabelled by {1: 0, 2: 4, 3: 1}
sage: D = DynkinDiagram(['A', [1,2]])
sage: Dp = D.relabel({-1:4, 0:-3, 1:3, 2:2})
sage: Dp
O---X---O---O
4 -3 3 2
A1|2 relabelled by {-1: 4, 0: -3, 1: 3, 2: 2}
sage: Dp.odd_isotropic_roots()
(-3,)
sage: D = DynkinDiagram(['D', 5])
sage: G, perm = D.relabel(range(5), return_map=True)
sage: G
O 4
|
|
O---O---O---O
0 1 2 3
D5 relabelled by {1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
sage: perm
{1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
sage: perm = D.relabel(range(5), return_map=True, inplace=True)
sage: D
O 4
|
|
O---O---O---O
0 1 2 3
D5 relabelled by {1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
sage: perm
{1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
"""
return_map = kwds.pop("return_map", False)
inplace = kwds.pop("inplace", False)
if inplace:
G = self
else:
# We need to copy self because we want to return the
# permutation and that works when relabelling in place.
G = self.copy()
perm = DiGraph.relabel(G, *args, inplace=True, return_map=True, **kwds)
new_odds = [perm[i] for i in self._odd_isotropic_roots]
G._odd_isotropic_roots = tuple(new_odds)
if self._cartan_type is not None:
G._cartan_type = self._cartan_type.relabel(perm.__getitem__)
if return_map:
if inplace:
return perm
else:
return G, perm
else:
return G
示例6: RandomPoset
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import relabel [as 别名]
def RandomPoset(n, p):
r"""
Generate a random poset on ``n`` elements according to a
probability ``p``.
INPUT:
- ``n`` - number of elements, a non-negative integer
- ``p`` - a probability, a real number between 0 and 1 (inclusive)
OUTPUT:
A poset on `n` elements. The probability `p` roughly measures
width/height of the output: `p=0` always generates an antichain,
`p=1` will return a chain. To create interesting examples,
keep the probability small, perhaps on the order of `1/n`.
EXAMPLES::
sage: set_random_seed(0) # Results are reproducible
sage: P = Posets.RandomPoset(5, 0.3)
sage: P.cover_relations()
[[5, 4], [4, 2], [1, 2]]
TESTS::
sage: Posets.RandomPoset('junk', 0.5)
Traceback (most recent call last):
...
TypeError: number of elements must be an integer, not junk
sage: Posets.RandomPoset(-6, 0.5)
Traceback (most recent call last):
...
ValueError: number of elements must be non-negative, not -6
sage: Posets.RandomPoset(6, 'garbage')
Traceback (most recent call last):
...
TypeError: probability must be a real number, not garbage
sage: Posets.RandomPoset(6, -0.5)
Traceback (most recent call last):
...
ValueError: probability must be between 0 and 1, not -0.5
sage: Posets.RandomPoset(0, 0.5)
Finite poset containing 0 elements
"""
from sage.misc.prandom import random
try:
n = Integer(n)
except TypeError:
raise TypeError("number of elements must be an integer, not {0}".format(n))
if n < 0:
raise ValueError("number of elements must be non-negative, not {0}".format(n))
try:
p = float(p)
except Exception:
raise TypeError("probability must be a real number, not {0}".format(p))
if p < 0 or p> 1:
raise ValueError("probability must be between 0 and 1, not {0}".format(p))
D = DiGraph(loops=False, multiedges=False)
D.add_vertices(range(n))
for i in range(n):
for j in range(i+1, n):
if random() < p:
D.add_edge(i, j)
D.relabel(list(Permutations(n).random_element()))
return Poset(D, cover_relations=False)
示例7: Hasse_diagram_from_incidences
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import relabel [as 别名]
#.........这里部分代码省略.........
and we can compute the Hasse diagram as ::
sage: L = sage.geometry.cone.Hasse_diagram_from_incidences(
... atom_to_coatoms, coatom_to_atoms)
sage: L
Finite poset containing 8 elements with distinguished linear extension
sage: for level in L.level_sets(): print(level)
[((), (0, 1, 2))]
[((0,), (0, 1)), ((1,), (0, 2)), ((2,), (1, 2))]
[((0, 1), (0,)), ((0, 2), (1,)), ((1, 2), (2,))]
[((0, 1, 2), ())]
For more involved examples see the *source code* of
:meth:`sage.geometry.cone.ConvexRationalPolyhedralCone.face_lattice` and
:meth:`sage.geometry.fan.RationalPolyhedralFan._compute_cone_lattice`.
"""
from sage.graphs.digraph import DiGraph
from sage.combinat.posets.posets import FinitePoset
def default_face_constructor(atoms, coatoms, **kwds):
return (atoms, coatoms)
if face_constructor is None:
face_constructor = default_face_constructor
atom_to_coatoms = [frozenset(atc) for atc in atom_to_coatoms]
A = frozenset(range(len(atom_to_coatoms))) # All atoms
coatom_to_atoms = [frozenset(cta) for cta in coatom_to_atoms]
C = frozenset(range(len(coatom_to_atoms))) # All coatoms
# Comments with numbers correspond to steps in Section 2.5 of the article
L = DiGraph(1) # 3: initialize L
faces = dict()
atoms = frozenset()
coatoms = C
faces[atoms, coatoms] = 0
next_index = 1
Q = [(atoms, coatoms)] # 4: initialize Q with the empty face
while Q: # 5
q_atoms, q_coatoms = Q.pop() # 6: remove some q from Q
q = faces[q_atoms, q_coatoms]
# 7: compute H = {closure(q+atom) : atom not in atoms of q}
H = dict()
candidates = set(A.difference(q_atoms))
for atom in candidates:
coatoms = q_coatoms.intersection(atom_to_coatoms[atom])
atoms = A
for coatom in coatoms:
atoms = atoms.intersection(coatom_to_atoms[coatom])
H[atom] = (atoms, coatoms)
# 8: compute the set G of minimal sets in H
minimals = set([])
while candidates:
candidate = candidates.pop()
atoms = H[candidate][0]
if atoms.isdisjoint(candidates) and atoms.isdisjoint(minimals):
minimals.add(candidate)
# Now G == {H[atom] : atom in minimals}
for atom in minimals: # 9: for g in G:
g_atoms, g_coatoms = H[atom]
if not required_atoms is None:
if g_atoms.isdisjoint(required_atoms):
continue
if (g_atoms, g_coatoms) in faces:
g = faces[g_atoms, g_coatoms]
else: # 11: if g was newly created
g = next_index
faces[g_atoms, g_coatoms] = g
next_index += 1
Q.append((g_atoms, g_coatoms)) # 12
L.add_edge(q, g) # 14
# End of algorithm, now construct a FinitePoset.
# In principle, it is recommended to use Poset or in this case perhaps
# even LatticePoset, but it seems to take several times more time
# than the above computation, makes unnecessary copies, and crashes.
# So for now we will mimic the relevant code from Poset.
# Enumeration of graph vertices must be a linear extension of the poset
new_order = L.topological_sort()
# Make sure that coatoms are in the end in proper order
tail = [faces[atoms, frozenset([coatom])]
for coatom, atoms in enumerate(coatom_to_atoms)]
tail.append(faces[A, frozenset()])
new_order = [n for n in new_order if n not in tail] + tail
# Make sure that atoms are in the beginning in proper order
head = [0] # We know that the empty face has index 0
head.extend(faces[frozenset([atom]), coatoms]
for atom, coatoms in enumerate(atom_to_coatoms)
if required_atoms is None or atom in required_atoms)
new_order = head + [n for n in new_order if n not in head]
# "Invert" this list to a dictionary
labels = dict()
for new, old in enumerate(new_order):
labels[old] = new
L.relabel(labels)
# Construct the actual poset elements
elements = [None] * next_index
for face, index in faces.items():
atoms, coatoms = face
elements[labels[index]] = face_constructor(
tuple(sorted(atoms)), tuple(sorted(coatoms)), **kwds)
D = {i:f for i,f in enumerate(elements)}
L.relabel(D)
return FinitePoset(L, elements, key = key)
示例8: ParentBigOh
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import relabel [as 别名]
class ParentBigOh(Parent,UniqueRepresentation):
def __init__(self,ambiant):
try:
self._uniformizer = ambiant.uniformizer_name()
except NotImplementedError:
raise TypeError("Impossible to determine the name of the uniformizer")
self._ambiant_space = ambiant
self._models = DiGraph(loops=False)
self._default_model = None
Parent.__init__(self,ambiant.base_ring())
if self.base_ring() is None:
self._base_precision = None
else:
if self.base_ring() == ambiant:
self._base_precision = self
else:
self._base_precision = ParentBigOh(self.base_ring())
def __hash__(self):
return id(self)
def base_precision(self):
return self._base_precision
def precision(self):
return self._precision
def default_model(self):
if self._default_mode is None:
self.set_default_model()
return self._default_model
def set_default_model(self,model=None):
if model is None:
self._default_model = self._models.topological_sort()[-1]
else:
if self._models.has_vertex(model):
self._default_model = model
else:
raise ValueError
def add_model(self,model):
from bigoh import BigOh
if not isinstance(model,list):
model = [model]
for m in model:
if not issubclass(m,BigOh):
raise TypeError("A precision model must derive from BigOh but '%s' is not"%m)
self._models.add_vertex(m)
def delete_model(self,model):
if isinstance(model,list):
model = [model]
for m in model:
if self._models.has_vertex(m):
self._models.delete_vertex(m)
def update_model(self,old,new):
from bigoh import BigOh
if self._models.has_vertex(old):
if not issubclass(new,BigOh):
raise TypeError("A precision model must derive from BigOh but '%s' is not"%new)
self._models.relabel({old:new})
else:
raise ValueError("Model '%m' does not exist"%old)
def add_modelconversion(self,domain,codomain,constructor=None,safemode=False):
if not self._models.has_vertex(domain):
if safemode: return
raise ValueError("Model '%s' does not exist"%domain)
if not self._models.has_vertex(codomain):
if safemode: return
raise ValueError("Model '%s' does not exist"%codomain)
path = self._models.shortest_path(codomain,domain)
if len(path) > 0:
raise ValueError("Adding this conversion creates a cycle")
self._models.add_edge(domain,codomain,constructor)
def delete_modelconversion(self,domain,codomain):
if not self._models.has_vertex(domain):
raise ValueError("Model '%s' does not exist"%domain)
if not self._models.has_vertex(codomain):
raise ValueError("Model '%s' does not exist"%codomain)
if not self._models_has_edge(domain,codomain):
raise ValueError("No conversion from %s to %s"%(domain,codomain))
self._modelfs.delete_edge(domain,codomain)
def uniformizer_name(self):
return self._uniformizer
def ambiant_space(self):
return self._ambiant_space
# ?!?
def __call__(self,*args,**kwargs):
return self._element_constructor_(*args,**kwargs)
def _element_constructor_(self, *args, **kwargs):
if kwargs.has_key('model'):
del kwargs['model']
#.........这里部分代码省略.........