本文整理汇总了Python中sage.graphs.digraph.DiGraph.delete_vertex方法的典型用法代码示例。如果您正苦于以下问题:Python DiGraph.delete_vertex方法的具体用法?Python DiGraph.delete_vertex怎么用?Python DiGraph.delete_vertex使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.graphs.digraph.DiGraph
的用法示例。
在下文中一共展示了DiGraph.delete_vertex方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ParentBigOh
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import delete_vertex [as 别名]
class ParentBigOh(Parent,UniqueRepresentation):
def __init__(self,ambiant):
try:
self._uniformizer = ambiant.uniformizer_name()
except NotImplementedError:
raise TypeError("Impossible to determine the name of the uniformizer")
self._ambiant_space = ambiant
self._models = DiGraph(loops=False)
self._default_model = None
Parent.__init__(self,ambiant.base_ring())
if self.base_ring() is None:
self._base_precision = None
else:
if self.base_ring() == ambiant:
self._base_precision = self
else:
self._base_precision = ParentBigOh(self.base_ring())
def __hash__(self):
return id(self)
def base_precision(self):
return self._base_precision
def precision(self):
return self._precision
def default_model(self):
if self._default_mode is None:
self.set_default_model()
return self._default_model
def set_default_model(self,model=None):
if model is None:
self._default_model = self._models.topological_sort()[-1]
else:
if self._models.has_vertex(model):
self._default_model = model
else:
raise ValueError
def add_model(self,model):
from bigoh import BigOh
if not isinstance(model,list):
model = [model]
for m in model:
if not issubclass(m,BigOh):
raise TypeError("A precision model must derive from BigOh but '%s' is not"%m)
self._models.add_vertex(m)
def delete_model(self,model):
if isinstance(model,list):
model = [model]
for m in model:
if self._models.has_vertex(m):
self._models.delete_vertex(m)
def update_model(self,old,new):
from bigoh import BigOh
if self._models.has_vertex(old):
if not issubclass(new,BigOh):
raise TypeError("A precision model must derive from BigOh but '%s' is not"%new)
self._models.relabel({old:new})
else:
raise ValueError("Model '%m' does not exist"%old)
def add_modelconversion(self,domain,codomain,constructor=None,safemode=False):
if not self._models.has_vertex(domain):
if safemode: return
raise ValueError("Model '%s' does not exist"%domain)
if not self._models.has_vertex(codomain):
if safemode: return
raise ValueError("Model '%s' does not exist"%codomain)
path = self._models.shortest_path(codomain,domain)
if len(path) > 0:
raise ValueError("Adding this conversion creates a cycle")
self._models.add_edge(domain,codomain,constructor)
def delete_modelconversion(self,domain,codomain):
if not self._models.has_vertex(domain):
raise ValueError("Model '%s' does not exist"%domain)
if not self._models.has_vertex(codomain):
raise ValueError("Model '%s' does not exist"%codomain)
if not self._models_has_edge(domain,codomain):
raise ValueError("No conversion from %s to %s"%(domain,codomain))
self._modelfs.delete_edge(domain,codomain)
def uniformizer_name(self):
return self._uniformizer
def ambiant_space(self):
return self._ambiant_space
# ?!?
def __call__(self,*args,**kwargs):
return self._element_constructor_(*args,**kwargs)
def _element_constructor_(self, *args, **kwargs):
if kwargs.has_key('model'):
del kwargs['model']
#.........这里部分代码省略.........
示例2: reduced_rauzy_graph
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import delete_vertex [as 别名]
#.........这里部分代码省略.........
in the reduced Rauzy graph of order `n` whose label is the label of
the path in `G_n`.
.. NOTE::
In the case of infinite recurrent non periodic words, this
definition correspond to the following one that can be found in
[1] and [2] where a simple path is a path that begins with a
special factor, ends with a special factor and contains no
other vertices that are special:
The reduced Rauzy graph of factors of length `n` is obtained
from `G_n` by replacing each simple path `P=v_1 v_2 ...
v_{\ell}` with an edge `v_1 v_{\ell}` whose label is the
concatenation of the labels of the edges of `P`.
EXAMPLES::
sage: w = Word(range(10)); w
word: 0123456789
sage: g = w.reduced_rauzy_graph(3); g
Looped multi-digraph on 2 vertices
sage: g.vertices()
[word: 012, word: 789]
sage: g.edges()
[(word: 012, word: 789, word: 3456789)]
For the Fibonacci word::
sage: f = words.FibonacciWord()[:100]
sage: g = f.reduced_rauzy_graph(8);g
Looped multi-digraph on 2 vertices
sage: g.vertices()
[word: 01001010, word: 01010010]
sage: g.edges()
[(word: 01001010, word: 01010010, word: 010), (word: 01010010, word: 01001010, word: 01010), (word: 01010010, word: 01001010, word: 10)]
For periodic words::
sage: from itertools import cycle
sage: w = Word(cycle('abcd'))[:100]
sage: g = w.reduced_rauzy_graph(3)
sage: g.edges()
[(word: abc, word: abc, word: dabc)]
::
sage: w = Word('111')
sage: for i in range(5) : w.reduced_rauzy_graph(i)
Looped digraph on 1 vertex
Looped digraph on 1 vertex
Looped digraph on 1 vertex
Looped multi-digraph on 1 vertex
Looped multi-digraph on 0 vertices
For ultimately periodic words::
sage: sigma = WordMorphism('a->abcd,b->cd,c->cd,d->cd')
sage: w = sigma.fixed_point('a')[:100]; w
word: abcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd...
sage: g = w.reduced_rauzy_graph(5)
sage: g.vertices()
[word: abcdc, word: cdcdc]
sage: g.edges()
[(word: abcdc, word: cdcdc, word: dc), (word: cdcdc, word: cdcdc, word: dc)]
AUTHOR:
Julien Leroy (March 2010): initial version
REFERENCES:
- [1] M. Bucci et al. A. De Luca, A. Glen, L. Q. Zamboni, A
connection between palindromic and factor complexity using
return words," Advances in Applied Mathematics 42 (2009) 60-74.
- [2] L'ubomira Balkova, Edita Pelantova, and Wolfgang Steiner.
Sequences with constant number of return words. Monatsh. Math,
155 (2008) 251-263.
"""
from sage.graphs.all import DiGraph
from copy import copy
g = copy(self.rauzy_graph(n))
# Otherwise it changes the rauzy_graph function.
l = [v for v in g if g.in_degree(v)==1 and g.out_degree(v)==1]
if g.num_verts() !=0 and len(l)==g.num_verts():
# In this case, the Rauzy graph is simply a cycle.
g = DiGraph()
g.allow_loops(True)
g.add_vertex(self[:n])
g.add_edge(self[:n],self[:n],self[n:n+len(l)])
else:
g.allow_loops(True)
g.allow_multiple_edges(True)
for v in l:
[i] = g.neighbors_in(v)
[o] = g.neighbors_out(v)
g.add_edge(i,o,g.edge_label(i,v)[0]*g.edge_label(v,o)[0])
g.delete_vertex(v)
return g