当前位置: 首页>>代码示例>>Python>>正文


Python DiGraph.delete_vertex方法代码示例

本文整理汇总了Python中sage.graphs.digraph.DiGraph.delete_vertex方法的典型用法代码示例。如果您正苦于以下问题:Python DiGraph.delete_vertex方法的具体用法?Python DiGraph.delete_vertex怎么用?Python DiGraph.delete_vertex使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.graphs.digraph.DiGraph的用法示例。


在下文中一共展示了DiGraph.delete_vertex方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ParentBigOh

# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import delete_vertex [as 别名]
class ParentBigOh(Parent,UniqueRepresentation):
    def __init__(self,ambiant):
        try:
            self._uniformizer = ambiant.uniformizer_name()
        except NotImplementedError:
            raise TypeError("Impossible to determine the name of the uniformizer")
        self._ambiant_space = ambiant
        self._models = DiGraph(loops=False)
        self._default_model = None
        Parent.__init__(self,ambiant.base_ring())
        if self.base_ring() is None:
            self._base_precision = None
        else:
            if self.base_ring() == ambiant:
                self._base_precision = self
            else:
                self._base_precision = ParentBigOh(self.base_ring())

    def __hash__(self):
        return id(self)

    def base_precision(self):
        return self._base_precision

    def precision(self):
        return self._precision

    def default_model(self):
        if self._default_mode is None:
            self.set_default_model()
        return self._default_model
    
    def set_default_model(self,model=None):
        if model is None:
            self._default_model = self._models.topological_sort()[-1]
        else:
            if self._models.has_vertex(model):
                self._default_model = model
            else:
                raise ValueError

    def add_model(self,model):
        from bigoh import BigOh
        if not isinstance(model,list):
            model = [model]
        for m in model:
            if not issubclass(m,BigOh):
                raise TypeError("A precision model must derive from BigOh but '%s' is not"%m)
            self._models.add_vertex(m)

    def delete_model(self,model):
        if isinstance(model,list):
            model = [model]
        for m in model:
            if self._models.has_vertex(m):
                self._models.delete_vertex(m)

    def update_model(self,old,new):
        from bigoh import BigOh
        if self._models.has_vertex(old):
            if not issubclass(new,BigOh):
                raise TypeError("A precision model must derive from BigOh but '%s' is not"%new)
            self._models.relabel({old:new})
        else:
            raise ValueError("Model '%m' does not exist"%old)

    def add_modelconversion(self,domain,codomain,constructor=None,safemode=False):
        if not self._models.has_vertex(domain):
            if safemode: return
            raise ValueError("Model '%s' does not exist"%domain)
        if not self._models.has_vertex(codomain):
            if safemode: return
            raise ValueError("Model '%s' does not exist"%codomain)
        path = self._models.shortest_path(codomain,domain)
        if len(path) > 0:
            raise ValueError("Adding this conversion creates a cycle")
        self._models.add_edge(domain,codomain,constructor)

    def delete_modelconversion(self,domain,codomain):
        if not self._models.has_vertex(domain):
            raise ValueError("Model '%s' does not exist"%domain)
        if not self._models.has_vertex(codomain):
            raise ValueError("Model '%s' does not exist"%codomain)
        if not self._models_has_edge(domain,codomain):
            raise ValueError("No conversion from %s to %s"%(domain,codomain))
        self._modelfs.delete_edge(domain,codomain)

    def uniformizer_name(self):
        return self._uniformizer

    def ambiant_space(self):
        return self._ambiant_space

    # ?!?
    def __call__(self,*args,**kwargs):
        return self._element_constructor_(*args,**kwargs)
    
    def _element_constructor_(self, *args, **kwargs):
        if kwargs.has_key('model'):
            del kwargs['model']
#.........这里部分代码省略.........
开发者ID:roed314,项目名称:padicprec,代码行数:103,代码来源:parent_precision.py

示例2: reduced_rauzy_graph

# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import delete_vertex [as 别名]

#.........这里部分代码省略.........
        in the reduced Rauzy graph of order `n` whose label is the label of
        the path in `G_n`.
        
        .. NOTE::

            In the case of infinite recurrent non periodic words, this
            definition correspond to the following one that can be found in
            [1] and [2]  where a simple path is a path that begins with a
            special factor, ends with a special factor and contains no
            other vertices that are special:

            The reduced Rauzy graph of factors of length `n` is obtained
            from `G_n` by replacing each simple path `P=v_1 v_2 ...
            v_{\ell}` with an edge `v_1 v_{\ell}` whose label is the
            concatenation of the labels of the edges of `P`.

        EXAMPLES::

            sage: w = Word(range(10)); w
            word: 0123456789
            sage: g = w.reduced_rauzy_graph(3); g
            Looped multi-digraph on 2 vertices
            sage: g.vertices()
            [word: 012, word: 789]
            sage: g.edges()
            [(word: 012, word: 789, word: 3456789)]

        For the Fibonacci word::

            sage: f = words.FibonacciWord()[:100]
            sage: g = f.reduced_rauzy_graph(8);g
            Looped multi-digraph on 2 vertices
            sage: g.vertices()
            [word: 01001010, word: 01010010]
            sage: g.edges()
            [(word: 01001010, word: 01010010, word: 010), (word: 01010010, word: 01001010, word: 01010), (word: 01010010, word: 01001010, word: 10)]

        For periodic words::

            sage: from itertools import cycle
            sage: w = Word(cycle('abcd'))[:100]
            sage: g = w.reduced_rauzy_graph(3)
            sage: g.edges()
            [(word: abc, word: abc, word: dabc)]

        ::

            sage: w = Word('111')
            sage: for i in range(5) : w.reduced_rauzy_graph(i)
            Looped digraph on 1 vertex
            Looped digraph on 1 vertex
            Looped digraph on 1 vertex
            Looped multi-digraph on 1 vertex
            Looped multi-digraph on 0 vertices

        For ultimately periodic words::

            sage: sigma = WordMorphism('a->abcd,b->cd,c->cd,d->cd')
            sage: w = sigma.fixed_point('a')[:100]; w
            word: abcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd...
            sage: g = w.reduced_rauzy_graph(5)
            sage: g.vertices()
            [word: abcdc, word: cdcdc]
            sage: g.edges()
            [(word: abcdc, word: cdcdc, word: dc), (word: cdcdc, word: cdcdc, word: dc)]

        AUTHOR:

        Julien Leroy (March 2010): initial version

        REFERENCES:

        - [1] M. Bucci et al.  A. De Luca, A. Glen, L. Q. Zamboni, A
          connection between palindromic and factor complexity using
          return words," Advances in Applied Mathematics 42 (2009) 60-74.

        - [2] L'ubomira Balkova, Edita Pelantova, and Wolfgang Steiner.
          Sequences with constant number of return words. Monatsh. Math,
          155 (2008) 251-263.
        """
        from sage.graphs.all import DiGraph
        from copy import copy
        g = copy(self.rauzy_graph(n))      
        # Otherwise it changes the rauzy_graph function.
        l = [v for v in g if g.in_degree(v)==1 and g.out_degree(v)==1]
        if g.num_verts() !=0 and len(l)==g.num_verts():       
            # In this case, the Rauzy graph is simply a cycle.
            g = DiGraph()
            g.allow_loops(True)
            g.add_vertex(self[:n])
            g.add_edge(self[:n],self[:n],self[n:n+len(l)])
        else:
            g.allow_loops(True)
            g.allow_multiple_edges(True)
            for v in l:
                [i] = g.neighbors_in(v)
                [o] = g.neighbors_out(v)
                g.add_edge(i,o,g.edge_label(i,v)[0]*g.edge_label(v,o)[0])
                g.delete_vertex(v)
        return g
开发者ID:bgxcpku,项目名称:sagelib,代码行数:104,代码来源:nfactor_enumerable_word.py


注:本文中的sage.graphs.digraph.DiGraph.delete_vertex方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。