本文整理汇总了Python中sage.graphs.digraph.DiGraph.name方法的典型用法代码示例。如果您正苦于以下问题:Python DiGraph.name方法的具体用法?Python DiGraph.name怎么用?Python DiGraph.name使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.graphs.digraph.DiGraph
的用法示例。
在下文中一共展示了DiGraph.name方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: Circuit
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def Circuit(self,n):
r"""
Returns the circuit on `n` vertices
The circuit is an oriented ``CycleGraph``
EXAMPLE:
A circuit is the smallest strongly connected digraph::
sage: circuit = digraphs.Circuit(15)
sage: len(circuit.strongly_connected_components()) == 1
True
"""
g = DiGraph(n)
g.name("Circuit")
if n==0:
return g
elif n == 1:
g.allow_loops(True)
g.add_edge(0,0)
return g
else:
g.add_edges([(i,i+1) for i in xrange(n-1)])
g.add_edge(n-1,0)
return g
示例2: Circuit
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def Circuit(self,n):
r"""
Returns the circuit on `n` vertices
The circuit is an oriented ``CycleGraph``
EXAMPLE:
A circuit is the smallest strongly connected digraph::
sage: circuit = digraphs.Circuit(15)
sage: len(circuit.strongly_connected_components()) == 1
True
"""
if n<0:
raise ValueError("The number of vertices must be a positive integer.")
g = DiGraph()
g.name("Circuit on "+str(n)+" vertices")
if n==0:
return g
elif n == 1:
g.allow_loops(True)
g.add_edge(0,0)
return g
else:
g.add_edges([(i,i+1) for i in xrange(n-1)])
g.add_edge(n-1,0)
return g
示例3: Path
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def Path(self,n):
r"""
Returns a directed path on `n` vertices.
INPUT:
- ``n`` (integer) -- number of vertices in the path.
EXAMPLES::
sage: g = digraphs.Path(5)
sage: g.vertices()
[0, 1, 2, 3, 4]
sage: g.size()
4
sage: g.automorphism_group().cardinality()
1
"""
g = DiGraph(n)
g.name("Path")
if n:
g.add_path(range(n))
g.set_pos({i:(i,0) for i in range(n)})
return g
示例4: Tournament
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def Tournament(self,n):
r"""
Returns a tournament on `n` vertices.
In this tournament there is an edge from `i` to `j` if `i<j`.
INPUT:
- ``n`` (integer) -- number of vertices in the tournament.
EXAMPLES::
sage: g = digraphs.Tournament(5)
sage: g.vertices()
[0, 1, 2, 3, 4]
sage: g.size()
10
sage: g.automorphism_group().cardinality()
1
"""
if n<0:
raise ValueError("The number of vertices must be a positive integer.")
g = DiGraph()
g.name("Tournament on "+str(n)+" vertices")
for i in range(n-1):
for j in range(i+1, n):
g.add_edge(i,j)
if n:
from sage.graphs.graph_plot import _circle_embedding
_circle_embedding(g, range(n))
return g
示例5: Path
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def Path(self,n):
r"""
Returns a directed path on `n` vertices.
INPUT:
- ``n`` (integer) -- number of vertices in the path.
EXAMPLES::
sage: g = digraphs.Path(5)
sage: g.vertices()
[0, 1, 2, 3, 4]
sage: g.size()
4
sage: g.automorphism_group().cardinality()
1
"""
if n<0:
raise ValueError("The number of vertices must be a positive integer.")
g = DiGraph()
g.name("Path on "+str(n)+" vertices")
if n:
g.add_path(range(n))
g.set_pos({i:(i,0) for i in range(n)})
return g
示例6: RandomTournament
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def RandomTournament(self, n):
r"""
Returns a random tournament on `n` vertices.
For every pair of vertices, the tournament has an edge from
`i` to `j` with probability `1/2`, otherwise it has an edge
from `j` to `i`.
See :wikipedia:`Tournament_(graph_theory)`
INPUT:
- ``n`` (integer) -- number of vertices.
EXAMPLES::
sage: T = digraphs.RandomTournament(10); T
Random Tournament: Digraph on 10 vertices
sage: T.size() == binomial(10, 2)
True
sage: digraphs.RandomTournament(-1)
Traceback (most recent call last):
...
ValueError: The number of vertices cannot be strictly negative!
"""
from sage.misc.prandom import random
g = DiGraph(n)
g.name("Random Tournament")
for i in range(n - 1):
for j in range(i + 1, n):
if random() <= 0.5:
g.add_edge(i, j)
else:
g.add_edge(j, i)
if n:
from sage.graphs.graph_plot import _circle_embedding
_circle_embedding(g, range(n))
return g
示例7: TransitiveTournament
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def TransitiveTournament(self, n):
r"""
Returns a transitive tournament on `n` vertices.
In this tournament there is an edge from `i` to `j` if `i<j`.
See :wikipedia:`Tournament_(graph_theory)`
INPUT:
- ``n`` (integer) -- number of vertices in the tournament.
EXAMPLES::
sage: g = digraphs.TransitiveTournament(5)
sage: g.vertices()
[0, 1, 2, 3, 4]
sage: g.size()
10
sage: g.automorphism_group().cardinality()
1
TESTS::
sage: digraphs.TransitiveTournament(-1)
Traceback (most recent call last):
...
ValueError: The number of vertices cannot be strictly negative!
"""
g = DiGraph(n)
g.name("Transitive Tournament")
for i in range(n - 1):
for j in range(i + 1, n):
g.add_edge(i, j)
if n:
from sage.graphs.graph_plot import _circle_embedding
_circle_embedding(g, range(n))
return g
示例8: Kautz
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
#.........这里部分代码省略.........
is the cardinality minus one of the alphabet to use.
- An iterable object to be used as the set of letters. The degree of
the resulting digraph is the cardinality of the set of letters
minus one.
- ``D`` -- An integer equal to the diameter of the digraph, and also to
the length of a vertex label when ``vertices == 'strings'``.
- ``vertices`` -- 'strings' (default) or 'integers', specifying whether
the vertices are words build upon an alphabet or integers.
EXAMPLES::
sage: K = digraphs.Kautz(2, 3)
sage: K.is_isomorphic(digraphs.ImaseItoh(12, 2), certify = True)
(True,
{'010': 0,
'012': 1,
'020': 3,
'021': 2,
'101': 11,
'102': 10,
'120': 9,
'121': 8,
'201': 5,
'202': 4,
'210': 6,
'212': 7})
sage: K = digraphs.Kautz([1,'a','B'], 2)
sage: K.edges()
[('1B', 'B1', '1'), ('1B', 'Ba', 'a'), ('1a', 'a1', '1'), ('1a', 'aB', 'B'), ('B1', '1B', 'B'), ('B1', '1a', 'a'), ('Ba', 'a1', '1'), ('Ba', 'aB', 'B'), ('a1', '1B', 'B'), ('a1', '1a', 'a'), ('aB', 'B1', '1'), ('aB', 'Ba', 'a')]
sage: K = digraphs.Kautz([1,'aA','BB'], 2)
sage: K.edges()
[('1,BB', 'BB,1', '1'), ('1,BB', 'BB,aA', 'aA'), ('1,aA', 'aA,1', '1'), ('1,aA', 'aA,BB', 'BB'), ('BB,1', '1,BB', 'BB'), ('BB,1', '1,aA', 'aA'), ('BB,aA', 'aA,1', '1'), ('BB,aA', 'aA,BB', 'BB'), ('aA,1', '1,BB', 'BB'), ('aA,1', '1,aA', 'aA'), ('aA,BB', 'BB,1', '1'), ('aA,BB', 'BB,aA', 'aA')]
TESTS:
An exception is raised when the degree is less than one::
sage: G = digraphs.Kautz(0, 2)
Traceback (most recent call last):
...
ValueError: Kautz digraphs are defined for degree at least one.
sage: G = digraphs.Kautz(['a'], 2)
Traceback (most recent call last):
...
ValueError: Kautz digraphs are defined for degree at least one.
An exception is raised when the diameter of the graph is less than one::
sage: G = digraphs.Kautz(2, 0)
Traceback (most recent call last):
...
ValueError: Kautz digraphs are defined for diameter at least one.
REFERENCE:
.. [Kautz68] W. H. Kautz. Bounds on directed (d, k) graphs. Theory of
cellular logic networks and machines, AFCRL-68-0668, SRI Project 7258,
Final Rep., pp. 20-28, 1968.
"""
if D < 1:
raise ValueError("Kautz digraphs are defined for diameter at least one.")
from sage.combinat.words.words import Words
from sage.rings.integer import Integer
my_alphabet = Words([str(i) for i in range(k+1)] if isinstance(k, Integer) else k, 1)
if my_alphabet.size_of_alphabet() < 2:
raise ValueError("Kautz digraphs are defined for degree at least one.")
if vertices == 'strings':
# We start building the set of vertices
V = [i for i in my_alphabet]
for i in range(D-1):
VV = []
for w in V:
VV += [w*a for a in my_alphabet if not w.has_suffix(a) ]
V = VV
# We now build the set of arcs
G = DiGraph()
for u in V:
for a in my_alphabet:
if not u.has_suffix(a):
G.add_edge(u.string_rep(), (u[1:]*a).string_rep(), a.string_rep())
else:
d = my_alphabet.size_of_alphabet()-1
G = digraphs.ImaseItoh( (d+1)*(d**(D-1)), d)
G.name( "Kautz digraph (k=%s, D=%s)"%(k,D) )
return G
示例9: ImaseItoh
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def ImaseItoh(self, n, d):
r"""
Returns the digraph of Imase and Itoh of order `n` and degree `d`.
The digraph of Imase and Itoh has been defined in [II83]_. It has vertex
set `V=\{0, 1,..., n-1\}` and there is an arc from vertex `u \in V` to
all vertices `v \in V` such that `v \equiv (-u*d-a-1) \mod{n}` with
`0 \leq a < d`.
When `n = d^{D}`, the digraph of Imase and Itoh is isomorphic to the de
Bruijn digraph of degree `d` and diameter `D`. When `n = d^{D-1}(d+1)`,
the digraph of Imase and Itoh is isomorphic to the Kautz digraph
[Kautz68]_ of degree `d` and diameter `D`.
INPUTS:
- ``n`` -- is the number of vertices of the digraph
- ``d`` -- is the degree of the digraph
EXAMPLES::
sage: II = digraphs.ImaseItoh(8, 2)
sage: II.is_isomorphic(digraphs.DeBruijn(2, 3), certify = True)
(True, {0: '010', 1: '011', 2: '000', 3: '001', 4: '110', 5: '111', 6: '100', 7: '101'})
sage: II = digraphs.ImaseItoh(12, 2)
sage: II.is_isomorphic(digraphs.Kautz(2, 3), certify = True)
(True, {0: '010', 1: '012', 2: '021', 3: '020', 4: '202', 5: '201', 6: '210', 7: '212', 8: '121', 9: '120', 10: '102', 11: '101'})
TESTS:
An exception is raised when the degree is less than one::
sage: G = digraphs.ImaseItoh(2, 0)
Traceback (most recent call last):
...
ValueError: The digraph of Imase and Itoh is defined for degree at least one.
An exception is raised when the order of the graph is less than two::
sage: G = digraphs.ImaseItoh(1, 2)
Traceback (most recent call last):
...
ValueError: The digraph of Imase and Itoh is defined for at least two vertices.
REFERENCE:
.. [II83] M. Imase and M. Itoh. A design for directed graphs with
minimum diameter, *IEEE Trans. Comput.*, vol. C-32, pp. 782-784, 1983.
"""
if n < 2:
raise ValueError("The digraph of Imase and Itoh is defined for at least two vertices.")
if d < 1:
raise ValueError("The digraph of Imase and Itoh is defined for degree at least one.")
II = DiGraph(loops = True)
II.allow_multiple_edges(True)
for u in xrange(n):
for a in xrange(-u*d-d, -u*d):
II.add_edge(u, a % n)
II.name( "Imase and Itoh digraph (n=%s, d=%s)"%(n,d) )
return II
示例10: GeneralizedDeBruijn
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def GeneralizedDeBruijn(self, n, d):
r"""
Returns the generalized de Bruijn digraph of order `n` and degree `d`.
The generalized de Bruijn digraph has been defined in [RPK80]_
[RPK83]_. It has vertex set `V=\{0, 1,..., n-1\}` and there is an arc
from vertex `u \in V` to all vertices `v \in V` such that
`v \equiv (u*d + a) \mod{n}` with `0 \leq a < d`.
When `n = d^{D}`, the generalized de Bruijn digraph is isomorphic to the
de Bruijn digraph of degree `d` and diameter `D`.
INPUTS:
- ``n`` -- is the number of vertices of the digraph
- ``d`` -- is the degree of the digraph
.. SEEALSO::
* :meth:`sage.graphs.generic_graph.GenericGraph.is_circulant` --
checks whether a (di)graph is circulant, and/or returns all
possible sets of parameters.
EXAMPLE::
sage: GB = digraphs.GeneralizedDeBruijn(8, 2)
sage: GB.is_isomorphic(digraphs.DeBruijn(2, 3), certify = True)
(True, {0: '000', 1: '001', 2: '010', 3: '011', 4: '100', 5: '101', 6: '110', 7: '111'})
TESTS:
An exception is raised when the degree is less than one::
sage: G = digraphs.GeneralizedDeBruijn(2, 0)
Traceback (most recent call last):
...
ValueError: The generalized de Bruijn digraph is defined for degree at least one.
An exception is raised when the order of the graph is less than one::
sage: G = digraphs.GeneralizedDeBruijn(0, 2)
Traceback (most recent call last):
...
ValueError: The generalized de Bruijn digraph is defined for at least one vertex.
REFERENCES:
.. [RPK80] S. M. Reddy, D. K. Pradhan, and J. Kuhl. Directed graphs with
minimal diameter and maximal connectivity, School Eng., Oakland Univ.,
Rochester MI, Tech. Rep., July 1980.
.. [RPK83] S. Reddy, P. Raghavan, and J. Kuhl. A Class of Graphs for
Processor Interconnection. *IEEE International Conference on Parallel
Processing*, pages 154-157, Los Alamitos, Ca., USA, August 1983.
"""
if n < 1:
raise ValueError("The generalized de Bruijn digraph is defined for at least one vertex.")
if d < 1:
raise ValueError("The generalized de Bruijn digraph is defined for degree at least one.")
GB = DiGraph(loops = True)
GB.allow_multiple_edges(True)
for u in xrange(n):
for a in xrange(u*d, u*d+d):
GB.add_edge(u, a%n)
GB.name( "Generalized de Bruijn digraph (n=%s, d=%s)"%(n,d) )
return GB
示例11: DeBruijn
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def DeBruijn(self, k, n, vertices = 'strings'):
r"""
Returns the De Bruijn digraph with parameters `k,n`.
The De Bruijn digraph with parameters `k,n` is built upon a set of
vertices equal to the set of words of length `n` from a dictionary of
`k` letters.
In this digraph, there is an arc `w_1w_2` if `w_2` can be obtained from
`w_1` by removing the leftmost letter and adding a new letter at its
right end. For more information, see the
:wikipedia:`Wikipedia article on De Bruijn graph <De_Bruijn_graph>`.
INPUT:
- ``k`` -- Two possibilities for this parameter :
- An integer equal to the cardinality of the alphabet to use, that
is the degree of the digraph to be produced.
- An iterable object to be used as the set of letters. The degree
of the resulting digraph is the cardinality of the set of
letters.
- ``n`` -- An integer equal to the length of words in the De Bruijn
digraph when ``vertices == 'strings'``, and also to the diameter of
the digraph.
- ``vertices`` -- 'strings' (default) or 'integers', specifying whether
the vertices are words build upon an alphabet or integers.
EXAMPLES::
sage: db=digraphs.DeBruijn(2,2); db
De Bruijn digraph (k=2, n=2): Looped digraph on 4 vertices
sage: db.order()
4
sage: db.size()
8
TESTS::
sage: digraphs.DeBruijn(5,0)
De Bruijn digraph (k=5, n=0): Looped multi-digraph on 1 vertex
sage: digraphs.DeBruijn(0,0)
De Bruijn digraph (k=0, n=0): Looped multi-digraph on 0 vertices
"""
from sage.combinat.words.words import Words
from sage.rings.integer import Integer
W = Words(range(k) if isinstance(k, Integer) else k, n)
A = Words(range(k) if isinstance(k, Integer) else k, 1)
g = DiGraph(loops=True)
if vertices == 'strings':
if n == 0 :
g.allow_multiple_edges(True)
v = W[0]
for a in A:
g.add_edge(v.string_rep(), v.string_rep(), a.string_rep())
else:
for w in W:
ww = w[1:]
for a in A:
g.add_edge(w.string_rep(), (ww*a).string_rep(), a.string_rep())
else:
d = W.size_of_alphabet()
g = digraphs.GeneralizedDeBruijn(d**n, d)
g.name( "De Bruijn digraph (k=%s, n=%s)"%(k,n) )
return g
示例12: DeBruijn
# 需要导入模块: from sage.graphs.digraph import DiGraph [as 别名]
# 或者: from sage.graphs.digraph.DiGraph import name [as 别名]
def DeBruijn(self,k,n):
r"""
Returns the De Bruijn diraph with parameters `k,n`.
The De Bruijn digraph with parameters `k,n` is built
upon a set of vertices equal to the set of words of
length `n` from a dictionary of `k` letters.
In this digraph, there is an arc `w_1w_2` if `w_2`
can be obtained from `w_1` by removing the leftmost
letter and adding a new letter at its right end.
For more information, see the
`Wikipedia article on De Bruijn graph
<http://en.wikipedia.org/wiki/De_Bruijn_graph>`_.
INPUT:
- ``k`` -- Two possibilities for this parameter :
- an integer equal to the cardinality of the
alphabet to use.
- An iterable object to be used as the set
of letters
- ``n`` -- An integer equal to the length of words in
the De Bruijn digraph.
EXAMPLES::
sage: db=digraphs.DeBruijn(2,2); db
De Bruijn digraph (k=2, n=2): Looped digraph on 4 vertices
sage: db.order()
4
sage: db.size()
8
TESTS::
sage: digraphs.DeBruijn(5,0)
De Bruijn digraph (k=5, n=0): Looped multi-digraph on 1 vertex
sage: digraphs.DeBruijn(0,0)
De Bruijn digraph (k=0, n=0): Looped multi-digraph on 0 vertices
"""
from sage.combinat.words.words import Words
from sage.rings.integer import Integer
W = Words(range(k) if isinstance(k, Integer) else k, n)
A = Words(range(k) if isinstance(k, Integer) else k, 1)
g = DiGraph(loops=True)
if n == 0 :
g.allow_multiple_edges(True)
v = W[0]
for a in A:
g.add_edge(v.string_rep(), v.string_rep(), a.string_rep())
else:
for w in W:
ww = w[1:]
for a in A:
g.add_edge(w.string_rep(), (ww*a).string_rep(), a.string_rep())
g.name( "De Bruijn digraph (k=%s, n=%s)"%(k,n) )
return g