当前位置: 首页>>代码示例>>Python>>正文


Python RootSystem.weyl_group方法代码示例

本文整理汇总了Python中sage.combinat.root_system.root_system.RootSystem.weyl_group方法的典型用法代码示例。如果您正苦于以下问题:Python RootSystem.weyl_group方法的具体用法?Python RootSystem.weyl_group怎么用?Python RootSystem.weyl_group使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.combinat.root_system.root_system.RootSystem的用法示例。


在下文中一共展示了RootSystem.weyl_group方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from sage.combinat.root_system.root_system import RootSystem [as 别名]
# 或者: from sage.combinat.root_system.root_system.RootSystem import weyl_group [as 别名]
    def __init__(self, cartan_type, prefix, finite=True):
        r"""

        EXAMPLES::

            sage: from sage.combinat.root_system.fundamental_group import FundamentalGroupOfExtendedAffineWeylGroup
            sage: F = FundamentalGroupOfExtendedAffineWeylGroup(['A',3,1])
            sage: F in Groups().Commutative().Finite()
            True
            sage: TestSuite(F).run()
        """
        def leading_support(beta):
            r"""
            Given a dictionary with one key, return this key
            """
            supp = beta.support()
            assert len(supp) == 1
            return supp[0]

        self._cartan_type = cartan_type
        self._prefix = prefix
        special_node = cartan_type.special_node()
        self._special_nodes = cartan_type.special_nodes()

        # initialize dictionaries with the entries for the distinguished special node
        # dictionary of inverse elements
        inverse_dict = {}
        inverse_dict[special_node] = special_node
        # dictionary for the action of special automorphisms by permutations of the affine Dynkin nodes
        auto_dict = {}
        for i in cartan_type.index_set():
            auto_dict[special_node,i] = i
        # dictionary for the finite Weyl component of the special automorphisms
        reduced_words_dict = {}
        reduced_words_dict[0] = tuple([])

        if cartan_type.dual().is_untwisted_affine():
            # this combines the computations for an untwisted affine type and its affine dual
            cartan_type = cartan_type.dual()
        if cartan_type.is_untwisted_affine():
            cartan_type_classical = cartan_type.classical()
            I = [i for i in cartan_type_classical.index_set()]
            Q = RootSystem(cartan_type_classical).root_lattice()
            alpha = Q.simple_roots()
            omega = RootSystem(cartan_type_classical).weight_lattice().fundamental_weights()
            W = Q.weyl_group(prefix="s")
            for i in self._special_nodes:
                if i == special_node:
                    continue
                antidominant_weight, reduced_word = omega[i].to_dominant_chamber(reduced_word=True, positive=False)
                reduced_words_dict[i] = tuple(reduced_word)
                w0i = W.from_reduced_word(reduced_word)
                idual = leading_support(-antidominant_weight)
                inverse_dict[i] = idual
                auto_dict[i,special_node] = i
                for j in I:
                    if j == idual:
                        auto_dict[i,j] = special_node
                    else:
                        auto_dict[i,j] = leading_support(w0i.action(alpha[j]))

        self._action = Family(self._special_nodes, lambda i: Family(cartan_type.index_set(), lambda j: auto_dict[i,j]))
        self._dual_node = Family(self._special_nodes, inverse_dict.__getitem__)
        self._reduced_words = Family(self._special_nodes, reduced_words_dict.__getitem__)

        if finite:
            cat = Category.join((Groups().Commutative().Finite(),EnumeratedSets()))
        else:
            cat = Groups().Commutative().Infinite()
        Parent.__init__(self, category = cat)
开发者ID:saraedum,项目名称:sage-renamed,代码行数:72,代码来源:fundamental_group.py


注:本文中的sage.combinat.root_system.root_system.RootSystem.weyl_group方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。