本文整理汇总了Python中sage.combinat.root_system.root_system.RootSystem.one方法的典型用法代码示例。如果您正苦于以下问题:Python RootSystem.one方法的具体用法?Python RootSystem.one怎么用?Python RootSystem.one使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.combinat.root_system.root_system.RootSystem
的用法示例。
在下文中一共展示了RootSystem.one方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: RationalCherednikAlgebra
# 需要导入模块: from sage.combinat.root_system.root_system import RootSystem [as 别名]
# 或者: from sage.combinat.root_system.root_system.RootSystem import one [as 别名]
class RationalCherednikAlgebra(CombinatorialFreeModule):
r"""
A rational Cherednik algebra.
Let `k` be a field. Let `W` be a complex reflection group acting on
a vector space `\mathfrak{h}` (over `k`). Let `\mathfrak{h}^*` denote
the corresponding dual vector space. Let `\cdot` denote the
natural action of `w` on `\mathfrak{h}` and `\mathfrak{h}^*`. Let
`\mathcal{S}` denote the set of reflections of `W` and `\alpha_s`
and `\alpha_s^{\vee}` are the associated root and coroot of `s`. Let
`c = (c_s)_{s \in W}` such that `c_s = c_{tst^{-1}}` for all `t \in W`.
The *rational Cherednik algebra* is the `k`-algebra
`H_{c,t}(W) = T(\mathfrak{h} \oplus \mathfrak{h}^*) \otimes kW` with
parameters `c, t \in k` that is subject to the relations:
.. MATH::
\begin{aligned}
w \alpha & = (w \cdot \alpha) w,
\\ \alpha^{\vee} w & = w (w^{-1} \cdot \alpha^{\vee}),
\\ \alpha \alpha^{\vee} & = \alpha^{\vee} \alpha
+ t \langle \alpha^{\vee}, \alpha \rangle
+ \sum_{s \in \mathcal{S}} c_s \frac{\langle \alpha^{\vee},
\alpha_s \rangle \langle \alpha^{\vee}_s, \alpha \rangle}{
\langle \alpha^{\vee}, \alpha \rangle} s,
\end{aligned}
where `w \in W` and `\alpha \in \mathfrak{h}` and
`\alpha^{\vee} \in \mathfrak{h}^*`.
INPUT:
- ``ct`` -- a finite Cartan type
- ``c`` -- the parameters `c_s` given as an element or a tuple, where
the first entry is the one for the long roots and (for
non-simply-laced types) the second is for the short roots
- ``t`` -- the parameter `t`
- ``base_ring`` -- (optional) the base ring
- ``prefix`` -- (default: ``('a', 's', 'ac')``) the prefixes
.. TODO::
Implement a version for complex reflection groups.
REFERENCES:
- [GGOR2003]_
- [EM2001]_
"""
@staticmethod
def __classcall_private__(cls, ct, c=1, t=None, base_ring=None, prefix=('a', 's', 'ac')):
"""
Normalize input to ensure a unique representation.
EXAMPLES::
sage: R1 = algebras.RationalCherednik(['B',2], 1, 1, QQ)
sage: R2 = algebras.RationalCherednik(CartanType(['B',2]), [1,1], 1, QQ, ('a', 's', 'ac'))
sage: R1 is R2
True
"""
ct = CartanType(ct)
if not ct.is_finite():
raise ValueError("the Cartan type must be finite")
if base_ring is None:
if t is None:
base_ring = QQ
else:
base_ring = t.parent()
if t is None:
t = base_ring.one()
else:
t = base_ring(t)
# Normalize the parameter c
if isinstance(c, (tuple, list)):
if ct.is_simply_laced():
if len(c) != 1:
raise ValueError("1 parameter c_s must be given for simply-laced types")
c = (base_ring(c[0]),)
else:
if len(c) != 2:
raise ValueError("2 parameters c_s must be given for non-simply-laced types")
c = (base_ring(c[0]), base_ring(c[1]))
else:
c = base_ring(c)
if ct.is_simply_laced():
c = (c,)
else:
c = (c, c)
return super(RationalCherednikAlgebra, cls).__classcall__(cls, ct, c, t, base_ring, tuple(prefix))
def __init__(self, ct, c, t, base_ring, prefix):
r"""
Initialize ``self``.
EXAMPLES::
#.........这里部分代码省略.........