当前位置: 首页>>代码示例>>Python>>正文


Python RootSystem.fundamental_weights方法代码示例

本文整理汇总了Python中sage.combinat.root_system.root_system.RootSystem.fundamental_weights方法的典型用法代码示例。如果您正苦于以下问题:Python RootSystem.fundamental_weights方法的具体用法?Python RootSystem.fundamental_weights怎么用?Python RootSystem.fundamental_weights使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.combinat.root_system.root_system.RootSystem的用法示例。


在下文中一共展示了RootSystem.fundamental_weights方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: maximal_elements

# 需要导入模块: from sage.combinat.root_system.root_system import RootSystem [as 别名]
# 或者: from sage.combinat.root_system.root_system.RootSystem import fundamental_weights [as 别名]
    def maximal_elements(self):
        r"""
        Return the maximal elements of ``self`` with respect to Bruhat order.

        The current implementation is via a conjectural type-free
        formula. Use maximal_elements_combinatorial() for proven
        type-specific implementations. To compare type-free and
        type-specific (combinatorial) implementations, use method
        :meth:`_test_maximal_elements`.

        EXAMPLES::

            sage: W = WeylGroup(['A',4,1])
            sage: PF = W.pieri_factors()
            sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
            [[0, 4, 3, 2], [1, 0, 4, 3], [2, 1, 0, 4], [3, 2, 1, 0], [4, 3, 2, 1]]

            sage: W = WeylGroup(RootSystem(["C",3,1]).weight_space())
            sage: PF = W.pieri_factors()
            sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
            [[0, 1, 2, 3, 2, 1], [1, 0, 1, 2, 3, 2], [1, 2, 3, 2, 1, 0],
             [2, 1, 0, 1, 2, 3], [2, 3, 2, 1, 0, 1], [3, 2, 1, 0, 1, 2]]

            sage: W = WeylGroup(RootSystem(["B",3,1]).weight_space())
            sage: PF = W.pieri_factors()
            sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
            [[0, 2, 3, 2, 0], [1, 0, 2, 3, 2], [1, 2, 3, 2, 1],
             [2, 1, 0, 2, 3], [2, 3, 2, 1, 0], [3, 2, 1, 0, 2]]

            sage: W = WeylGroup(['D',4,1])
            sage: PF = W.pieri_factors()
            sage: sorted([w.reduced_word() for w in PF.maximal_elements()], key=str)
            [[0, 2, 4, 3, 2, 0], [1, 0, 2, 4, 3, 2], [1, 2, 4, 3, 2, 1],
             [2, 1, 0, 2, 4, 3], [2, 4, 3, 2, 1, 0], [3, 2, 1, 0, 2, 3],
             [4, 2, 1, 0, 2, 4], [4, 3, 2, 1, 0, 2]]
        """
        ct = self.W.cartan_type()
        s = ct.translation_factors()[1]
        R = RootSystem(ct).weight_space()
        Lambda = R.fundamental_weights()
        orbit = [R.reduced_word_of_translation(x)
                 for x in (s*(Lambda[1]-Lambda[1].level()*Lambda[0]))._orbit_iter()]
        return [self.W.from_reduced_word(x) for x in orbit]
开发者ID:sagemath,项目名称:sage,代码行数:45,代码来源:pieri_factors.py


注:本文中的sage.combinat.root_system.root_system.RootSystem.fundamental_weights方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。