当前位置: 首页>>代码示例>>Python>>正文


Python RootSystem.cardinality方法代码示例

本文整理汇总了Python中sage.combinat.root_system.root_system.RootSystem.cardinality方法的典型用法代码示例。如果您正苦于以下问题:Python RootSystem.cardinality方法的具体用法?Python RootSystem.cardinality怎么用?Python RootSystem.cardinality使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.combinat.root_system.root_system.RootSystem的用法示例。


在下文中一共展示了RootSystem.cardinality方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: RationalCherednikAlgebra

# 需要导入模块: from sage.combinat.root_system.root_system import RootSystem [as 别名]
# 或者: from sage.combinat.root_system.root_system.RootSystem import cardinality [as 别名]

#.........这里部分代码省略.........
            sage: R._product_coroot_root(1, 3)
            ((1, 0), (s1*s2*s3*s2*s1, 1/2*c), (s2*s3*s2, -1/2*c),
             (s1*s2*s1, -1/2*c), (s1, 0), (s3, 0), (s2, 1/2*c))
        """
        Q = RootSystem(self._cartan_type).root_lattice()
        ac = Q.simple_coroot(i)
        al = Q.simple_root(j)

        R = self.base_ring()
        terms = [( self._weyl.one(), self._t * R(ac.scalar(al)) )]
        for s in self._reflections:
            # p[0] is the root, p[1] is the coroot, p[2] the value c_s
            pr, pc, c = self._reflections[s]
            terms.append(( s, c * R(ac.scalar(pr) * pc.scalar(al)
                                    / pc.scalar(pr)) ))
        return tuple(terms)

    def degree_on_basis(self, m):
        """
        Return the degree on the monomial indexed by ``m``.

        EXAMPLES::

            sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
            sage: [R.degree_on_basis(g.leading_support())
            ....:  for g in R.algebra_generators()]
            [1, 1, 0, 0, -1, -1]
        """
        return m[0].length() - m[2].length()

    @cached_method
    def trivial_idempotent(self):
        """
        Return the trivial idempotent of ``self``.

        Let `e = |W|^{-1} \sum_{w \in W} w` is the trivial idempotent.
        Thus `e^2 = e` and `eW = We`. The trivial idempotent is used
        in the construction of the spherical Cherednik algebra from
        the rational Cherednik algebra by `U_{c,t}(W) = e H_{c,t}(W) e`.

        EXAMPLES::

            sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
            sage: R.trivial_idempotent()
            1/6*I + 1/6*s1 + 1/6*s2 + 1/6*s2*s1 + 1/6*s1*s2 + 1/6*s1*s2*s1
        """
        coeff = self.base_ring()(~self._weyl.cardinality())
        hd_one = self._hd.one() # root - a
        h_one = self._h.one() # coroot - ac
        return self._from_dict({(hd_one, w, h_one): coeff for w in self._weyl},
                               remove_zeros=False)

    @cached_method
    def deformed_euler(self):
        """
        Return the element `eu_k`.

        EXAMPLES::

            sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
            sage: R.deformed_euler()
            2*I + 2/3*a1*ac1 + 1/3*a1*ac2 + 1/3*a2*ac1 + 2/3*a2*ac2
             + s1 + s2 + s1*s2*s1
        """
        I = self._cartan_type.index_set()
        G = self.algebra_generators()
        cm = ~CartanMatrix(self._cartan_type)
        n = len(I)
        ac = [G['ac'+str(i)] for i in I]
        la = [sum(cm[i,j]*G['a'+str(I[i])] for i in range(n)) for j in range(n)]
        return self.sum(ac[i]*la[i] for i in range(n))

    @cached_method
    def an_element(self):
        """
        Return an element of ``self``.

        EXAMPLES::

            sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
            sage: R.an_element()
            3*ac1 + 2*s1 + a1
        """
        G = self.algebra_generators()
        i = str(self._cartan_type.index_set()[0])
        return G['a'+i] + 2*G['s'+i] + 3*G['ac'+i]

    def some_elements(self):
        """
        Return some elements of ``self``.

        EXAMPLES::

            sage: R = algebras.RationalCherednik(['A',2], 1, 1, QQ)
            sage: R.some_elements()
            [0, I, 3*ac1 + 2*s1 + a1, a1, a2, s1, s2, ac1, ac2]
        """
        ret = [self.zero(), self.one(), self.an_element()]
        ret += list(self.algebra_generators())
        return ret
开发者ID:mcognetta,项目名称:sage,代码行数:104,代码来源:rational_cherednik_algebra.py


注:本文中的sage.combinat.root_system.root_system.RootSystem.cardinality方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。