本文整理汇总了Python中sage.combinat.partition.Partition.size方法的典型用法代码示例。如果您正苦于以下问题:Python Partition.size方法的具体用法?Python Partition.size怎么用?Python Partition.size使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.combinat.partition.Partition
的用法示例。
在下文中一共展示了Partition.size方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __classcall_private__
# 需要导入模块: from sage.combinat.partition import Partition [as 别名]
# 或者: from sage.combinat.partition.Partition import size [as 别名]
def __classcall_private__(cls, shape, weight):
r"""
Straighten arguments before unique representation.
TESTS::
sage: LR = LittlewoodRichardsonTableaux([3,2,1],[[2,1],[2,1]])
sage: TestSuite(LR).run()
sage: LittlewoodRichardsonTableaux([3,2,1],[[2,1]])
Traceback (most recent call last):
...
ValueError: the sizes of shapes and sequence of weights do not match
"""
shape = Partition(shape)
weight = tuple(Partition(a) for a in weight)
if shape.size() != sum(a.size() for a in weight):
raise ValueError("the sizes of shapes and sequence of weights do not match")
return super(LittlewoodRichardsonTableaux, cls).__classcall__(cls, shape, weight)
示例2: __classcall_private__
# 需要导入模块: from sage.combinat.partition import Partition [as 别名]
# 或者: from sage.combinat.partition.Partition import size [as 别名]
def __classcall_private__(cls, deg, par):
r"""
Create a primary similarity class type.
EXAMPLES::
sage: PrimarySimilarityClassType(2, [3, 2, 1])
[2, [3, 2, 1]]
The parent class is the class of primary similarity class types of order
`d|\lambda\`::
sage: PT = PrimarySimilarityClassType(2, [3, 2, 1])
sage: PT.parent().size()
12
"""
par = Partition(par)
P = PrimarySimilarityClassTypes(par.size() * deg)
return P(deg, par)
示例3: coefficient_cycle_type
# 需要导入模块: from sage.combinat.partition import Partition [as 别名]
# 或者: from sage.combinat.partition.Partition import size [as 别名]
def coefficient_cycle_type(self, t):
"""
Returns the coefficient of a cycle type ``t`` in ``self``.
EXAMPLES::
sage: from sage.combinat.species.generating_series import CycleIndexSeriesRing
sage: p = SymmetricFunctions(QQ).power()
sage: CIS = CycleIndexSeriesRing(QQ)
sage: f = CIS([0, p([1]), 2*p([1,1]),3*p([2,1])])
sage: f.coefficient_cycle_type([1])
1
sage: f.coefficient_cycle_type([1,1])
2
sage: f.coefficient_cycle_type([2,1])
3
"""
t = Partition(t)
p = self.coefficient(t.size())
return p.coefficient(t)
示例4: SymmetricGroupRepresentation_generic_class
# 需要导入模块: from sage.combinat.partition import Partition [as 别名]
# 或者: from sage.combinat.partition.Partition import size [as 别名]
#.........这里部分代码省略.........
# return False
# else:
# return True
# else:
# if 'representation_matrix' in other.__dict__:
# return False
# else:
# return self.__dict__.__eq__(other.__dict__)
def __call__(self, permutation):
r"""
Return the image of ``permutation`` in the representation.
EXAMPLES::
sage: spc = SymmetricGroupRepresentation([2,1])
sage: spc([1,3,2])
[ 1 0]
[ 1 -1]
"""
return self.representation_matrix(Permutation(permutation))
def __iter__(self):
r"""
Iterate over the matrices representing the elements of the
symmetric group.
EXAMPLES::
sage: spc = SymmetricGroupRepresentation([1,1,1])
sage: list(spc)
[[1], [-1], [-1], [1], [1], [-1]]
"""
for permutation in Permutations(self._partition.size()):
yield self.representation_matrix(permutation)
def verify_representation(self):
r"""
Verify the representation: tests that the images of the simple
transpositions are involutions and tests that the braid relations
hold.
EXAMPLES::
sage: spc = SymmetricGroupRepresentation([1,1,1])
sage: spc.verify_representation()
True
sage: spc = SymmetricGroupRepresentation([4,2,1])
sage: spc.verify_representation()
True
"""
n = self._partition.size()
transpositions = []
for i in range(1,n):
si = Permutation(range(1,i) + [i+1,i] + range(i+2,n+1))
transpositions.append(si)
repn_matrices = map(self.representation_matrix, transpositions)
for (i,si) in enumerate(repn_matrices):
for (j,sj) in enumerate(repn_matrices):
if i == j:
if si*sj != si.parent().identity_matrix():
return False, "si si != 1 for i = %s" % (i,)
elif abs(i-j) > 1:
if si*sj != sj*si:
return False, "si sj != sj si for (i,j) =(%s,%s)" % (i,j)
else: