当前位置: 首页>>代码示例>>Python>>正文


Python Partition.conjugate方法代码示例

本文整理汇总了Python中sage.combinat.partition.Partition.conjugate方法的典型用法代码示例。如果您正苦于以下问题:Python Partition.conjugate方法的具体用法?Python Partition.conjugate怎么用?Python Partition.conjugate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.combinat.partition.Partition的用法示例。


在下文中一共展示了Partition.conjugate方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: Podium

# 需要导入模块: from sage.combinat.partition import Partition [as 别名]
# 或者: from sage.combinat.partition.Partition import conjugate [as 别名]
    def Podium(data):
        r"""
        If ``data`` is an integer than the standard podium with ``data`` steps is
        returned. Otherwise, ``data`` should be a weakly decreasing list of integers
        (i.e. a integer partition).

        EXAMPLES::

            sage: from surface_dynamics.all import *

            sage: o = origamis.Podium([3,3,2,1])
            sage: o
            Podium origami with partition [3, 3, 2, 1]
            sage: print o
            (1,2,3)(4,5,6)(7,8)(9)
            (1,4,7,9)(2,5,8)(3,6)
        """
        from sage.combinat.partition import Partition

        if isinstance(data, (int,Integer)):
            p = Partition([i for i in xrange(data,0,-1)])
        else:
            p = Partition(data)

        p = Partition(data)
        q = p.conjugate()

        r=[]
        positions = []
        i = 0
        for j,jj in enumerate(p):
            r.extend(xrange(i+1,i+jj))
            r.append(i)
            i += jj
            positions.extend((k,j) for k in xrange(jj))

        u = [None]*sum(p)
        for j in xrange(len(q)):
            k = j
            for jj in xrange(q[j]-1):
                u[k] = k+p[jj]
                k += p[jj]
            u[k] = j

        return Origami(r,u,positions=positions,name="Podium origami with partition %s" %str(p),as_tuple=True)
开发者ID:fchapoton,项目名称:flatsurf-package,代码行数:47,代码来源:generators.py

示例2: insertion_tableau

# 需要导入模块: from sage.combinat.partition import Partition [as 别名]
# 或者: from sage.combinat.partition.Partition import conjugate [as 别名]
def insertion_tableau(skp, perm, evaluation, tableau, length):
    """
    INPUT:

    -  ``skp`` -- skew partitions

    -  ``perm, evaluation`` -- non-negative integers

    -  ``tableau`` -- skew tableau

    -  ``length`` -- integer

    TESTS::

        sage: from sage.combinat.ribbon_tableau import insertion_tableau
        sage: insertion_tableau([[1], []], [1], 1, [[], []], 1)
        [[], [[1]]]
        sage: insertion_tableau([[2, 1], []], [1, 1], 2, [[], [[1]]], 1)
        [[], [[2], [1, 2]]]
        sage: insertion_tableau([[2, 1], []], [0, 0], 3, [[], [[2], [1, 2]]], 1)
        [[], [[2], [1, 2]]]
        sage: insertion_tableau([[1, 1], []], [1], 2, [[], [[1]]], 1)
        [[], [[2], [1]]]
        sage: insertion_tableau([[2], []], [0, 1], 2, [[], [[1]]], 1)
        [[], [[1, 2]]]
        sage: insertion_tableau([[2, 1], []], [0, 1], 3, [[], [[2], [1]]], 1)
        [[], [[2], [1, 3]]]
        sage: insertion_tableau([[1, 1], []], [2], 1, [[], []], 2)
        [[], [[1], [0]]]
        sage: insertion_tableau([[2], []], [2, 0], 1, [[], []], 2)
        [[], [[1, 0]]]
        sage: insertion_tableau([[2, 2], []], [0, 2], 2, [[], [[1], [0]]], 2)
        [[], [[1, 2], [0, 0]]]
        sage: insertion_tableau([[2, 2], []], [2, 0], 2, [[], [[1, 0]]], 2)
        [[], [[2, 0], [1, 0]]]
        sage: insertion_tableau([[2, 2], [1]], [3, 0], 1, [[], []], 3)
        [[1], [[1, 0], [0]]]
    """
    psave = Partition(skp[1])
    partc = skp[1] + [0]*(len(skp[0])-len(skp[1]))

    tableau = SkewTableau(expr=tableau).to_expr()[1]

    for k in range(len(tableau)):
        tableau[-(k+1)] += [0]* ( skp[0][k] - partc[k] - len(tableau[-(k+1)]))

    ## We construct a tableau from the southwest corner to the northeast one
    tableau = [[0] * (skp[0][k] - partc[k])
               for k in reversed(range(len(tableau), len(skp[0])))] + tableau

    tableau = SkewTableaux().from_expr([skp[1], tableau]).conjugate()
    tableau = tableau.to_expr()[1]

    skp = SkewPartition(skp).conjugate().to_list()
    skp[1].extend( [0]*(len(skp[0])-len(skp[1])) )

    if len(perm) > len(skp[0]):
        return None

    for k in range(len(perm)):
        if perm[ -(k+1) ] !=0:
            tableau[len(tableau)-len(perm)+k][ skp[0][len(perm)-(k+1)] - skp[1][ len(perm)-(k+1) ] - 1 ] = evaluation

    return SkewTableau(expr=[psave.conjugate(),tableau]).conjugate().to_expr()
开发者ID:drupel,项目名称:sage,代码行数:66,代码来源:ribbon_tableau.py

示例3: HighestWeightCrystal

# 需要导入模块: from sage.combinat.partition import Partition [as 别名]
# 或者: from sage.combinat.partition.Partition import conjugate [as 别名]

#.........这里部分代码省略.........
        27664
        sage: T = crystals.HighestWeight(La[6])
        sage: T.cardinality()
        1539
        sage: T = crystals.HighestWeight(La[7])
        sage: T.cardinality()
        56

    An example with an affine type::

        sage: C = CartanType(['C',2,1])
        sage: La = C.root_system().weight_lattice().fundamental_weights()
        sage: T = crystals.HighestWeight(La[1])
        sage: sorted(T.subcrystal(max_depth=3), key=str)
        [(-Lambda[0] + 3*Lambda[1] - Lambda[2] - delta,),
         (-Lambda[0] + Lambda[1] + Lambda[2] - delta,),
         (-Lambda[1] + 2*Lambda[2] - delta,),
         (2*Lambda[0] - Lambda[1],),
         (Lambda[0] + Lambda[1] - Lambda[2],),
         (Lambda[0] - Lambda[1] + Lambda[2],),
         (Lambda[1],)]

    Using the various models::

        sage: La = RootSystem(['F',4]).weight_lattice().fundamental_weights()
        sage: wt = La[1] + La[4]
        sage: crystals.HighestWeight(wt)
        The crystal of LS paths of type ['F', 4] and weight Lambda[1] + Lambda[4]
        sage: crystals.HighestWeight(wt, model='NakajimaMonomials')
        Highest weight crystal of modified Nakajima monomials of
         Cartan type ['F', 4] and highest weight Lambda[1] + Lambda[4]
        sage: crystals.HighestWeight(wt, model='AlcovePaths')
        Highest weight crystal of alcove paths of type ['F', 4] and weight Lambda[1] + Lambda[4]
        sage: crystals.HighestWeight(wt, model='RiggedConfigurations')
        Crystal of rigged configurations of type ['F', 4] and weight Lambda[1] + Lambda[4]
    """
    cartan_type = dominant_weight.parent().cartan_type()
    if model is None:
        if cartan_type.is_finite():
            if cartan_type.type() == 'E':
                model = 'TypeE'
            elif cartan_type.type() in ['A','B','C','D','G']:
                model = 'Tableaux'
            else:
                model = 'LSPaths'
        else:
            model = 'LSPaths'

    if model == 'Tableaux':
        sh = sum([[i]*c for i,c in dominant_weight], [])
        sh = Partition(reversed(sh))
        return CrystalOfTableaux(cartan_type, shape=sh.conjugate())

    if model == 'TypeE':
        if not cartan_type.is_finite() or cartan_type.type() != 'E':
            raise ValueError("only for finite type E")
        if cartan_type.rank() == 6:
            return FiniteDimensionalHighestWeightCrystal_TypeE6(dominant_weight)
        elif cartan_type.rank() == 7:
            return FiniteDimensionalHighestWeightCrystal_TypeE7(dominant_weight)
        raise NotImplementedError

    if model == 'NakajimaMonomials':
        # Make sure it's in the weight lattice
        P = dominant_weight.parent().root_system.weight_lattice()
        wt = P.sum_of_terms((i, c) for i,c in dominant_weight)
        return CrystalOfNakajimaMonomials(cartan_type, wt)

    if model == 'LSPaths':
        # Make sure it's in the (extended) weight space
        if cartan_type.is_affine():
            P = dominant_weight.parent().root_system.weight_space(extended=True)
        else:
            P = dominant_weight.parent().root_system.weight_space()
        wt = P.sum_of_terms((i, c) for i,c in dominant_weight)
        return CrystalOfLSPaths(wt)

    if model == 'AlcovePaths':
        # Make sure it's in the weight space
        P = dominant_weight.parent().root_system.weight_space()
        wt = P.sum_of_terms((i, c) for i,c in dominant_weight)
        return CrystalOfAlcovePaths(wt, highest_weight_crystal=True)

    if model == 'GeneralizedYoungWalls':
        if not cartan_type.is_affine():
            raise ValueError("only for affine types")
        if cartan_type.type() != 'A':
            raise NotImplementedError("only for affine type A")
        # Make sure it's in the weight lattice
        P = dominant_weight.parent().root_system.weight_space()
        wt = P.sum_of_terms((i, c) for i,c in dominant_weight)
        return CrystalOfGeneralizedYoungWalls(cartan_type.rank(), wt)

    if model == 'RiggedConfigurations':
        # Make sure it's in the weight lattice
        P = dominant_weight.parent().root_system.weight_lattice()
        wt = P.sum_of_terms((i, c) for i,c in dominant_weight)
        return CrystalOfRiggedConfigurations(cartan_type, wt)

    raise ValueError("invalid model")
开发者ID:Babyll,项目名称:sage,代码行数:104,代码来源:highest_weight_crystals.py


注:本文中的sage.combinat.partition.Partition.conjugate方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。