当前位置: 首页>>代码示例>>Python>>正文


Python Partition.dominates方法代码示例

本文整理汇总了Python中sage.combinat.partition.Partition.dominates方法的典型用法代码示例。如果您正苦于以下问题:Python Partition.dominates方法的具体用法?Python Partition.dominates怎么用?Python Partition.dominates使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.combinat.partition.Partition的用法示例。


在下文中一共展示了Partition.dominates方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: is_gale_ryser

# 需要导入模块: from sage.combinat.partition import Partition [as 别名]
# 或者: from sage.combinat.partition.Partition import dominates [as 别名]
def is_gale_ryser(r,s):
    r"""
    Tests whether the given sequences satisfy the condition
    of the Gale-Ryser theorem.

    Given a binary matrix `B` of dimension `n\times m`, the
    vector of row sums is defined as the vector whose
    `i^{\mbox{th}}` component is equal to the sum of the `i^{\mbox{th}}`
    row in `A`. The vector of column sums is defined similarly.

    If, given a binary matrix, these two vectors are easy to compute,
    the Gale-Ryser theorem lets us decide whether, given two
    non-negative vectors `r,s`, there exists a binary matrix
    whose row/colum sums vectors are `r` and `s`.

    This functions answers accordingly.

    INPUT:

    - ``r``, ``s`` -- lists of non-negative integers.

    ALGORITHM:

    Without loss of generality, we can assume that:

    - The two given sequences do not contain any `0` ( which would
      correspond to an empty column/row )

    - The two given sequences are ordered in decreasing order
      (reordering the sequence of row (resp. column) sums amounts to
      reordering the rows (resp. columns) themselves in the matrix,
      which does not alter the columns (resp. rows) sums.

    We can then assume that `r` and `s` are partitions
    (see the corresponding class ``Partition``)

    If `r^*` denote the conjugate of `r`, the Gale-Ryser theorem
    asserts that a binary Matrix satisfying the constraints exists
    if and only if `s\preceq r^*`, where `\preceq` denotes
    the domination order on partitions.

    EXAMPLES::

        sage: from sage.combinat.integer_vector import is_gale_ryser
        sage: is_gale_ryser([4,2,2],[3,3,1,1])
        True
        sage: is_gale_ryser([4,2,1,1],[3,3,1,1])
        True
        sage: is_gale_ryser([3,2,1,1],[3,3,1,1])
        False

    REMARK: In the literature, what we are calling a
    Gale-Ryser sequence sometimes goes by the (rather
    generic-sounding) term ''realizable sequence''.
    """

    # The sequences only contan non-negative integers
    if [x for x in r if x<0] or [x for x in s if x<0]:
        return False

    # builds the corresponding partitions, i.e.
    # removes the 0 and sorts the sequences
    from sage.combinat.partition import Partition
    r2 = Partition(sorted([x for x in r if x>0], reverse=True))
    s2 = Partition(sorted([x for x in s if x>0], reverse=True))

    # If the two sequences only contained zeroes
    if len(r2) == 0 and len(s2) == 0:
        return True

    rstar = Partition(r2).conjugate()

    #                                same number of 1s           domination
    return len(rstar) <= len(s2) and  sum(r2) == sum(s2) and rstar.dominates(s)
开发者ID:Babyll,项目名称:sage,代码行数:76,代码来源:integer_vector.py


注:本文中的sage.combinat.partition.Partition.dominates方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。