当前位置: 首页>>代码示例>>Python>>正文


Python Partition.contains方法代码示例

本文整理汇总了Python中sage.combinat.partition.Partition.contains方法的典型用法代码示例。如果您正苦于以下问题:Python Partition.contains方法的具体用法?Python Partition.contains怎么用?Python Partition.contains使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.combinat.partition.Partition的用法示例。


在下文中一共展示了Partition.contains方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: q_subgroups_of_abelian_group

# 需要导入模块: from sage.combinat.partition import Partition [as 别名]
# 或者: from sage.combinat.partition.Partition import contains [as 别名]

#.........这里部分代码省略.........
    conjugate to `\lambda` and `\mu` respectively. Let


    .. MATH::

        \mathfrak{F}(\xi_1, \ldots, \xi_k) = \xi_1^{r_2} \xi_2^{r_3} \cdots
        \xi_{k-1}^{r_k} \prod_{i_1=r_2}^{r_1-1} (\xi_1-q^{i_1})
        \prod_{i_2=r_3}^{r_2-1} (\xi_2-q^{i_2}) \cdots
        \prod_{i_k=0}^{r_k-1} (\xi_k-q^{-i_k}).

    Then the number of subgroups of type `\mu` in a group of type `\lambda`
    is given by

    .. MATH::

        \frac{\mathfrak{F}(q^{s_1}, q^{s_2}, \ldots, q^{s_k})}{\mathfrak{F}
        (q^{r_1}, q^{r_2}, \ldots, q^{r_k})}.

    EXAMPLES::

        sage: from sage.combinat.q_analogues import q_subgroups_of_abelian_group
        sage: q_subgroups_of_abelian_group([1,1], [1])
        q + 1
        sage: q_subgroups_of_abelian_group([3,3,2,1], [2,1])
        q^6 + 2*q^5 + 3*q^4 + 2*q^3 + q^2
        sage: R.<t> = QQ[]
        sage: q_subgroups_of_abelian_group([5,3,1], [3,1], t)
        t^4 + 2*t^3 + t^2
        sage: q_subgroups_of_abelian_group([5,3,1], [3,1], 3)
        144
        sage: q_subgroups_of_abelian_group([1,1,1], [1]) == q_subgroups_of_abelian_group([1,1,1], [1,1])
        True
        sage: q_subgroups_of_abelian_group([5], [3])
        1
        sage: q_subgroups_of_abelian_group([1], [2])
        0
        sage: q_subgroups_of_abelian_group([2], [1,1])
        0

    TESTS:

    Check the same examples with ``algorithm='delsarte'``::

        sage: q_subgroups_of_abelian_group([1,1], [1], algorithm='delsarte')
        q + 1
        sage: q_subgroups_of_abelian_group([3,3,2,1], [2,1], algorithm='delsarte')
        q^6 + 2*q^5 + 3*q^4 + 2*q^3 + q^2
        sage: q_subgroups_of_abelian_group([5,3,1], [3,1], t, algorithm='delsarte')
        t^4 + 2*t^3 + t^2
        sage: q_subgroups_of_abelian_group([5,3,1], [3,1], 3, algorithm='delsarte')
        144
        sage: q_subgroups_of_abelian_group([1,1,1], [1], algorithm='delsarte') == q_subgroups_of_abelian_group([1,1,1], [1,1])
        True
        sage: q_subgroups_of_abelian_group([5], [3], algorithm='delsarte')
        1
        sage: q_subgroups_of_abelian_group([1], [2], algorithm='delsarte')
        0
        sage: q_subgroups_of_abelian_group([2], [1,1], algorithm='delsarte')
        0

    REFERENCES:

    .. [Bu87] Butler, Lynne M. *A unimodality result in the enumeration
       of subgroups of a finite abelian group.* Proceedings of the American
       Mathematical Society 101, no. 4 (1987): 771-775.
       :doi:`10.1090/S0002-9939-1987-0911049-8`

    .. [Delsarte48] \S. Delsarte, *Fonctions de Möbius Sur Les Groupes Abeliens
       Finis*, Annals of Mathematics, second series, Vol. 45, No. 3, (Jul 1948),
       pp. 600-609. http://www.jstor.org/stable/1969047

    AUTHORS:

    - Amritanshu Prasad (2013-06-07): Implemented the Delsarte algorithm
    - Tomer Bauer (2013-09-26): Implemented the Birkhoff algorithm
    """
    if q is None:
        q = ZZ['q'].gens()[0]
    la_c = Partition(la).conjugate()
    mu_c = Partition(mu).conjugate()
    k = mu_c.length()
    if not la_c.contains(mu_c):
        return q.parent().zero()

    if algorithm == 'delsarte':
        def F(args):
            prd = lambda j: prod(args[j]-q**i for i in range(mu_c[j+1],mu_c[j]))
            F1 = prod(args[i]**mu_c[i+1] * prd(i) for i in range(k-1))
            return F1 * prod(args[k-1]-q**i for i in range(mu_c[k-1]))

        return F([q**ss for ss in la_c[:k]])/F([q**rr for rr in mu_c])

    if algorithm == 'birkhoff':
        fac1 = q**(sum(mu_c[i+1] * (la_c[i]-mu_c[i]) for i in range(k-1)))
        fac2 = prod(q_binomial(la_c[i]-mu_c[i+1], mu_c[i]-mu_c[i+1], q=q) for i in range(k-1))
        fac3 = q_binomial(la_c[k-1], mu_c[k-1], q=q)

        return prod([fac1, fac2, fac3])

    raise ValueError("invalid algorithm choice")
开发者ID:drupel,项目名称:sage,代码行数:104,代码来源:q_analogues.py


注:本文中的sage.combinat.partition.Partition.contains方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。