当前位置: 首页>>代码示例>>Python>>正文


Python DataFrame.insert方法代码示例

本文整理汇总了Python中pyvttbl.DataFrame.insert方法的典型用法代码示例。如果您正苦于以下问题:Python DataFrame.insert方法的具体用法?Python DataFrame.insert怎么用?Python DataFrame.insert使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyvttbl.DataFrame的用法示例。


在下文中一共展示了DataFrame.insert方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: export_csv_pivot

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
def export_csv_pivot(request, entidad=1, ano=str(date.today().year)):

    consumos = Consumo.objects.filter(entidad__pk=entidad, ano=ano)
    
    from collections import namedtuple
    LineaDetalle = namedtuple('LineaDetalle',[u'Año', "Mes", 'Local_o_Vehiculo', "Consumo", "Valor"])

    df = DataFrame()    
    
    for c in consumos:

        if c.content_type.id == 16:
            denominacion = Local.objects.get(pk=c.object_id).denominacion
        else:
            denominacion = Vehiculo.objects.get(pk=c.object_id).denominacion

        df.insert(LineaDetalle(c.ano, c.mes, denominacion.encode("utf-8"), c.medida.denominacion.encode("utf-8"), c.valor)._asdict())

    pt = df.pivot("Valor", ['Local_o_Vehiculo','Consumo'], ['Mes'])

    # get the response object, this can be used as a stream.
    response = HttpResponse(mimetype='text/csv')
    # force download.
    response['Content-Disposition'] = 'attachment;filename=export.csv'

    response.write(pt)

    return response
开发者ID:alabarga,项目名称:calculadoraCO2,代码行数:30,代码来源:views.py

示例2: test1

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test1(self):
        df=DataFrame()

        with self.assertRaises(Exception) as cm:
            df.insert([1,2,3,4])

        self.assertEqual(str(cm.exception),
                         'row must be mappable type')
开发者ID:marsja,项目名称:pyvttbl,代码行数:10,代码来源:test_df_insert.py

示例3: test4

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test4(self):
        df=DataFrame()
        df.insert([('GROUP','AA'),('VAL',1)])
        
        with self.assertRaises(Exception) as cm:
            df.validate(lambda x: x in ['AA', 'AB', 'LAB'])

        self.assertEqual(str(cm.exception),
                         'criteria must be mappable type')
开发者ID:marsja,项目名称:pyvttbl,代码行数:11,代码来源:test_df_validate.py

示例4: test3

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test3(self):
        df=DataFrame()
        df.insert({'A':1, 'B':2})

        with self.assertRaises(Exception) as cm:
            df.insert({'A':1, 'B':2, 'C':3})

        self.assertEqual(str(cm.exception),
                         'row must have the same keys as the table')
开发者ID:marsja,项目名称:pyvttbl,代码行数:11,代码来源:test_df_insert.py

示例5: test3

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test3(self):

        tupa = ('a1','a2','a3')
        tupb = ('a1','b2','b3')
        
        df=DataFrame()
        df.insert([(('a1','a2','a3'),34), (('a1','b2','b3'),1)])
        df.insert([(('a1','a2','a3'),34), (('a1','b2','b3'),2)])
        df.insert([(('a1','a2','a3'),42), (('a1','b2','b3'),3)])

        namea,nameb = df.keys()
        
        self.assertEqual(namea, tupa)
        self.assertEqual(nameb, tupb)
开发者ID:marsja,项目名称:pyvttbl,代码行数:16,代码来源:test_df__setitem__.py

示例6: test0

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test0(self):
        df=DataFrame()
        conditionsDict=DictSet({'A':[10,20,40,80],
                                'B':[100,800],
                              'rep':range(10)})
        for A,B,rep in conditionsDict.unique_combinations():
            df.insert({'A':A, 'B':B,'rep':rep})

        for d,r in zip(df['A'],_rep_generator([10,20,40,80],4,20)):
            self.assertAlmostEqual(d,r)

        for d,r in zip(df['B'],_rep_generator([100,800],8,10)):
            self.assertAlmostEqual(d,r)

        for d,r in zip(df['rep'],_rep_generator(range(10),8,1)):
            self.assertAlmostEqual(d,r)
开发者ID:marsja,项目名称:pyvttbl,代码行数:18,代码来源:test_df_insert.py

示例7: test2

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test2(self):
        R={'A': [-8.0, -7.0, -3.0, -2.0, -1.0, 1.0, 2.0, 3.0, 4.0, 9.0, -10.0, -9.0, -6.0, -5.0, -4.0, 0.0, 5.0, 6.0, 7.0, 8.0],
           'B': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0]}

        a=[4, 8, 1, 5, -7, -5, 9, 7, -8, -10, -1, -4, 3, 0., -2, 6, 2, -9, -3, -6]
        b=[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]

        df=DataFrame()
        for A,B in zip(a,b):
            df.insert({'A':A, 'B':B})

        df.sort(['B','A'])

        for d,r in zip(df['A'],R['A']):
            self.assertAlmostEqual(d,r)

        for d,r in zip(df['B'],R['B']):
            self.assertAlmostEqual(d,r)
开发者ID:marsja,项目名称:pyvttbl,代码行数:20,代码来源:test_df_sort.py

示例8: test2

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test2(self):
        """method='valid', aggregate=count, invalid col"""
        
        R = """\
count(id)
member   Name=name1,   Name=name1,   Name=name2,   Total 
          Year=2010     Year=2011     Year=2011          
========================================================
N                  0             1             0       1 
Y                  1             0             1       2 
========================================================
Total              1             1             1       3 """
        
        df = DataFrame()
        df.insert({'id':0,'Name':'name1','Year':2010,'member':'Y'})
        df.insert({'id':1,'Name':'name1','Year':2011,'member':'N'})
        df.insert({'id':2,'Name':'name2','Year':2011,'member':'Y'})
        
        my_pivot = df.pivot('id',rows = ['member'], cols = ['Name','Year'], aggregate='count')
        
        self.assertEqual(R,str(my_pivot))
开发者ID:marsja,项目名称:pyvttbl,代码行数:23,代码来源:test_pt_run.py

示例9: test1

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test1(self):
        """method='valid', aggregate=count, invalid row"""
        
        R = """\
count(id)
Name    Year   member=N   member=Y   Total 
==========================================
name1   2010          0          1       1 
name1   2011          1          0       1 
name2   2011          0          1       1 
==========================================
Total                 1          2       3 """
        
        df = DataFrame()
        df.insert({'id':0,'Name':'name1','Year':2010,'member':'Y'})
        df.insert({'id':1,'Name':'name1','Year':2011,'member':'N'})
        df.insert({'id':2,'Name':'name2','Year':2011,'member':'Y'})
        
        my_pivot = df.pivot('id',rows = ['Name','Year'], cols = ['member'], aggregate='count')

        self.assertEqual(R,str(my_pivot))
开发者ID:marsja,项目名称:pyvttbl,代码行数:23,代码来源:test_pt_run.py

示例10: test4

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test4(self):
        """method='full', aggregate=tolist, invalid col"""
        
        R = """\
tolist(id)
member   Name=name1,    Name=name1,    Name=name2,    Name=name2,  
          Year=2010      Year=2011      Year=2010      Year=2011   
==================================================================
N        [None, None]     [1.0, 1.0]   [None, None]   [None, None] 
Y          [0.0, 0.0]   [None, None]   [None, None]     [2.0, 2.0] """
        
        df = DataFrame()
        df.insert({'id':0,'Name':'name1','Year':2010,'member':'Y','rep':1})
        df.insert({'id':1,'Name':'name1','Year':2011,'member':'N','rep':1})
        df.insert({'id':2,'Name':'name2','Year':2011,'member':'Y','rep':1})
        df.insert({'id':0,'Name':'name1','Year':2010,'member':'Y','rep':2})
        df.insert({'id':1,'Name':'name1','Year':2011,'member':'N','rep':2})
        df.insert({'id':2,'Name':'name2','Year':2011,'member':'Y','rep':2})
        
        my_pivot = df.pivot('id',rows = ['member'], cols = ['Name','Year'],
                            aggregate='tolist', method='full')

##        print(my_pivot)

        self.assertEqual(R,str(my_pivot))
开发者ID:marsja,项目名称:pyvttbl,代码行数:27,代码来源:test_pt_run.py

示例11: test3

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def test3(self):
        """method='full', aggregate=tolist, invalid row"""
        
        R = """\
tolist(id)
Name    Year     member=N       member=Y   
==========================================
name1   2010   [None, None]     [0.0, 0.0] 
name1   2011     [1.0, 1.0]   [None, None] 
name2   2010   [None, None]   [None, None] 
name2   2011   [None, None]     [2.0, 2.0] """
        
        df = DataFrame()
        df.insert({'id':0,'Name':'name1','Year':2010,'member':'Y','rep':1})
        df.insert({'id':1,'Name':'name1','Year':2011,'member':'N','rep':1})
        df.insert({'id':2,'Name':'name2','Year':2011,'member':'Y','rep':1})
        df.insert({'id':0,'Name':'name1','Year':2010,'member':'Y','rep':2})
        df.insert({'id':1,'Name':'name1','Year':2011,'member':'N','rep':2})
        df.insert({'id':2,'Name':'name2','Year':2011,'member':'Y','rep':2})
        
        my_pivot = df.pivot('id',rows = ['Name','Year'], cols = ['member'],
                            aggregate='tolist', method='full')
        

##        print(my_pivot)

        self.assertEqual(R,str(my_pivot))
开发者ID:marsja,项目名称:pyvttbl,代码行数:29,代码来源:test_pt_run.py

示例12: apply_method

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def apply_method(self, r, **attr):

        db = current.db

        response = current.response

        if not PYVTTBL:
            r.error(501, "Function not available on this server")

        if r.interactive:

            # Get rows, cols, fact and aggregate from URL
            if "row" in r.get_vars:
                rowname = r.get_vars["row"]
                self.rows = [rowname]
            else:
                r.error(400, "Missing row parameter")
            if "col" in r.get_vars:
                colname = r.get_vars["col"]
                self.cols = [colname]
            else:
                r.error(400, "Missing col parameter")
            if "fact" in r.get_vars:
                self.fact = r.get_vars["fact"]
            else:
                r.error(400, "Missing fact parameter")
            if "aggregate" in r.get_vars:
                self.aggregate = r.get_vars["aggregate"]
            else:
                self.aggregate = "group_concat"

            # Get the fields
            fields = []
            if self.rows:
                fields.extend([f for f in self.rows if f not in fields])
            if self.cols:
                fields.extend([f for f in self.cols if f not in fields])
            if self.fact and self.fact not in fields:
                fields.append(self.fact)
            list_fields = list(fields)
            lfields, join = self.get_list_fields(self.resource.table, list_fields)
            lfields = Storage([(f.fieldname, f) for f in lfields])

            # Get the items
            items = self.sqltable(list_fields, as_list=True)

            # Map the items into a data frame
            df = DataFrame()
            for row in items:
                frow = Storage()
                for field in fields:
                    lfield = lfields[field]
                    tname = lfield.tname
                    fname = lfield.fname
                    if fname in row:
                        value = row[fname]
                    elif tname in row and fname in row[tname]:
                        value = row[tname][fname]
                    else:
                        value = None
                    frow[field] = value
                df.insert(frow)

            # Pivot table
            try:
                pt = df.pivot(self.fact, self.rows, self.cols, aggregate=self.aggregate)
            except:
                r.error(400, "Could not generate contingency table", next=r.url(method=""))

            items = S3ContingencyTable(pt,
                                       rows=self.rows,
                                       cols=self.cols,
                                       fact=self.fact,
                                       lfields=lfields,
                                       _id="list",
                                       _class="dataTable display")

            output = dict(items=items)

        else:
            r.error(501, self.manager.ERROR.BAD_FORMAT)

        response.s3.no_sspag = True
        response.view = self._view(r, "list.html")

        return output
开发者ID:kheiss,项目名称:ece517_Project2_SA22,代码行数:88,代码来源:s3cube.py

示例13: test4

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
 def test4(self):
     df=DataFrame()
     df.insert([('A',1.23), ('B',2), ('C','A')])
     self.assertEqual(df.types(), ['real', 'integer', 'text'])
开发者ID:marsja,项目名称:pyvttbl,代码行数:6,代码来源:test_df_insert.py

示例14: OrderedDict

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
            
            # figure out pid and independent variable conditions
            pid = daq.etc['pid']
            trial = epoch / 10
            scenario = daq.etc['scen_order'][trial]
            section = epoch % 10 

            # pack pid and IV conditions into OrderedDict
            row = OrderedDict([('pid', pid),
                               ('trial', trial),
                               ('scenario', scenario),
                               ('section', section)])
            
            for (dv, indx) in dvs:
                vec = daq[dv][indx,fslice].flatten()

                row['%s_mean'%dv] = np.mean(vec)
                row['%s_min'%dv] = np.min(vec)
                row['%s_max'%dv] = np.max(vec)
                row['%s_range'%dv] = row['%s_max'%dv] - row['%s_min'%dv]
                row['%s_amean'%dv] = np.mean(np.abs(vec))
                row['%s_sd'%dv] = np.std(vec)
                row['%s_rms'%dv] = np.linalg.norm(vec)/np.sqrt(len(vec))

            # insert the row into the dataframe
            df.insert(row)

    df.write(fname='collaborated_ts.csv')
    
    print('\nDone.\n\ncollaborating timeseries measureas took %.1f s'%(time.time()-t0))        
开发者ID:rogerlew,项目名称:undaqTools,代码行数:32,代码来源:example03__collaborate_timeseries_measures.py

示例15: pivot

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import insert [as 别名]
    def pivot(self, r, **attr):
        """
            Method to generate contingency tables

            @param r: the S3Request instance
            @param attr: controller attributes for the request

            @todo: warn if dimension/fact doesn't belong to table
            @todo: support component fields
            @todo: support automatic generation of dimension classes
            @todo: optimize inner loops
            @todo: make facts inline-expandable
        """

        db = current.db
        T = current.T

        response = current.response

        resource = self.resource
        table = resource.table
        pkey = table._id.name

        # Get the fields
        fields = []
        if self.rows:
            fields.extend([f for f in self.rows if f not in fields])
        if self.cols:
            fields.extend([f for f in self.cols if f not in fields])
        if self.fact and self.fact not in fields:
            fields.append(self.fact)
        list_fields = list(fields)
        lfields, join = self.get_list_fields(table, list_fields)
        lfields = Storage([(f.fieldname, f) for f in lfields])

        # Get the items
        items = self.sqltable(list_fields,
                              as_list=True, start=None, limit=None)
        count = None
        if items:
            # Generate the data frame
            aggregate = self.aggregate == "list" and "group_concat" or \
                        self.aggregate
            from pyvttbl import DataFrame
            df = DataFrame()
            fmap = Storage()
            item_list = []
            for row in items:
                try:
                    frow = self.__extract(row, fields, resource, lfields, fmap)
                except KeyError:
                    e = sys.exc_info()[1]
                    if hasattr(e, "message"):
                        e = e.message
                    r.error(400, e, next=r.url(vars=[]))
                frow = self.__expand(frow)
                for item in frow:
                    if aggregate in ("group_concat", "count"):
                        i = Storage(item)
                        if self.fact != pkey:
                            del i[pkey]
                        # De-duplicate
                        if i not in item_list:
                            item_list.append(i)
                            df.insert(aggregate == "count" and i or item)
                    else:
                        df.insert(item)

            # In group_concat, always group primary keys, and then use
            # fmap to link individual fact values to their corresponding
            # records
            if aggregate == "group_concat" and fmap:
                fact = pkey
            else:
                # Otherwise group the fact value, and delete fmap
                fact = self.fact
                fmap = None

            # Pivoting
            try:
                pt = df.pivot(fact, self.rows, self.cols,
                              aggregate=aggregate)
            except:
                r.error(400, "Could not generate contingency table",
                        next=r.url(vars=[]))

            if aggregate == "count" or pt.grand_tot is None:
                count = len(item_list)

            # Generate output table
            items = S3ContingencyTable(r,
                                       self.resource,
                                       pt,
                                       rows=self.rows,
                                       cols=self.cols,
                                       fact=self.fact,
                                       lfields=lfields,
                                       fmap=fmap,
                                       count=count,
                                       _id="list",
#.........这里部分代码省略.........
开发者ID:flavour,项目名称:cert,代码行数:103,代码来源:s3cube.py


注:本文中的pyvttbl.DataFrame.insert方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。