当前位置: 首页>>代码示例>>Python>>正文


Python DataFrame.anova1way方法代码示例

本文整理汇总了Python中pyvttbl.DataFrame.anova1way方法的典型用法代码示例。如果您正苦于以下问题:Python DataFrame.anova1way方法的具体用法?Python DataFrame.anova1way怎么用?Python DataFrame.anova1way使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyvttbl.DataFrame的用法示例。


在下文中一共展示了DataFrame.anova1way方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test2

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import anova1way [as 别名]
    def test2(self):
        R="""Anova: Single Factor on SUPPRESSION

SUMMARY
Groups   Count     Sum      Average   Variance 
==============================================
AA         128       2048        16    148.792 
AB         128   2510.600    19.614    250.326 
LAB        128   2945.000    23.008    264.699 

O'BRIEN TEST FOR HOMOGENEITY OF VARIANCE
Source of Variation        SS        df        MS         F     P-value   eta^2   Obs. power 
============================================================================================
Treatments             1021873.960     2   510936.980   5.229     0.006   0.027        0.823 
Error                 37227154.824   381    97709.068                                        
============================================================================================
Total                 38249028.783   383                                                     

ANOVA
Source of Variation      SS       df       MS        F      P-value    eta^2   Obs. power 
=========================================================================================
Treatments             3144.039     2   1572.020   7.104   9.348e-04   0.036        0.922 
Error                 84304.687   381    221.272                                          
=========================================================================================
Total                 87448.726   383                                                     

POSTHOC MULTIPLE COMPARISONS

Tukey HSD: Table of q-statistics
      AA      AB        LAB    
==============================
AA    0    2.749 ns   5.330 ** 
AB         0          2.581 ns 
LAB                   0        
==============================
  + p < .10 (q-critical[3, 381] = 2.91125483514)
  * p < .05 (q-critical[3, 381] = 3.32766157576)
 ** p < .01 (q-critical[3, 381] = 4.14515568451)"""
        
        df = DataFrame()
        df.read_tbl('data/suppression~subjectXgroupXageXcycleXphase.csv')
        D=df.anova1way('SUPPRESSION', 'GROUP')
        
        self.assertEqual(str(D),R)
开发者ID:marsja,项目名称:pyvttbl,代码行数:46,代码来源:test_stats_anova1way.py

示例2: test2

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import anova1way [as 别名]
    def test2(self):
        R="""Anova: Single Factor on SUPPRESSION

SUMMARY
Groups   Count     Sum      Average   Variance
==============================================
AA         128       2048        16    148.792
AB         128   2510.600    19.614    250.326
LAB        128   2945.000    23.008    264.699

ANOVA
Source of       SS       df       MS        F      P-value
Variation
===========================================================
Treatments    3144.039     2   1572.020   7.104   9.348e-04
Error        84304.687   381    221.272
===========================================================
Total        87448.726   383                                """

        df = DataFrame()
        df.read_tbl('suppression~subjectXgroupXageXcycleXphase.csv')
        aov=df.anova1way('SUPPRESSION','GROUP')
        self.assertEqual(str(aov),R)
开发者ID:flavour,项目名称:cert,代码行数:25,代码来源:test_stats.py

示例3: DataFrame

# 需要导入模块: from pyvttbl import DataFrame [as 别名]
# 或者: from pyvttbl.DataFrame import anova1way [as 别名]
# instantiate DataFrame object to hold data
df = DataFrame() # inherents a dict

# put data into a DataFrame object
df['data'] = data1+data2

# build dummy code column
df['conditions'] = ['A']*len(data1)+['B']*len(data2)

# visually verify data in DataFrame
print(df)

# run 1 way analysis of variance
# returns another dict-like object
aov = df.anova1way('data', 'conditions')

# print anova results
print(aov)

# this is just to show the data in the aov object
print(aov.keys())

# calculate omega-squared
aov['omega-sq'] = (aov['ssbn'] - aov['dfbn']*aov['mswn']) / \
                  (aov['ssbn'] + aov['sswn'] + aov['mswn'])

# you can access the results this way
print(aov['omega-sq'])
print(aov['f'])
print(aov['p'])
开发者ID:marsja,项目名称:pyvttbl,代码行数:32,代码来源:betweenAVOVA_omega-squared.py


注:本文中的pyvttbl.DataFrame.anova1way方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。