当前位置: 首页>>代码示例>>Python>>正文


Python FrankWolfeSSVM.train方法代码示例

本文整理汇总了Python中pystruct.learners.FrankWolfeSSVM.train方法的典型用法代码示例。如果您正苦于以下问题:Python FrankWolfeSSVM.train方法的具体用法?Python FrankWolfeSSVM.train怎么用?Python FrankWolfeSSVM.train使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pystruct.learners.FrankWolfeSSVM的用法示例。


在下文中一共展示了FrankWolfeSSVM.train方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: PassageTagger

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import train [as 别名]
class PassageTagger(object):
  def __init__(self, do_train=False, trained_model_name="passage_crf_model", algorithm="crf"):
    self.trained_model_name = trained_model_name
    self.fp = FeatureProcessing()
    self.do_train = do_train
    self.algorithm = algorithm
    if algorithm == "crf":
      if do_train:
        self.trainer = Trainer()
      else:
        self.tagger = Tagger()
    else:
      if do_train:
        model = ChainCRF()
        self.trainer = FrankWolfeSSVM(model=model)
        self.feat_index = {}
        self.label_index = {}
      else:
        self.tagger = pickle.load(open(self.trained_model_name, "rb"))
        self.feat_index = pickle.load(open("ssvm_feat_index.pkl", "rb"))
        label_index = pickle.load(open("ssvm_label_index.pkl", "rb"))
        self.rev_label_index = {i: x for x, i in label_index.items()}

  def read_input(self, filename):
    str_seqs = []
    str_seq = []
    feat_seqs = []
    feat_seq = []
    label_seqs = []
    label_seq = []
    for line in codecs.open(filename, "r", "utf-8"):
      lnstrp = line.strip()
      if lnstrp == "":
        if len(str_seq) != 0:
          str_seqs.append(str_seq)
          str_seq = []
          feat_seqs.append(feat_seq)
          feat_seq = []
          label_seqs.append(label_seq)
          label_seq = []
      else:
        if self.do_train:
          clause, label = lnstrp.split("\t")
          label_seq.append(label)
        else:
          clause = lnstrp
        str_seq.append(clause)
        feats = self.fp.get_features(clause)
        feat_dict = {}
        for f in feats:
          if f in feat_dict:
            feat_dict[f] += 1
          else:
            feat_dict[f] = 1
        #feat_dict = {i: v for i, v in enumerate(feats)}
        feat_seq.append(feat_dict)
    if len(str_seq) != 0:
      str_seqs.append(str_seq)
      str_seq = []
      feat_seqs.append(feat_seq)
      feat_seq = []
      label_seqs.append(label_seq)
      label_seq = []
    return str_seqs, feat_seqs, label_seqs

  def predict(self, feat_seqs):
    print >>sys.stderr, "Tagging %d sequences"%len(feat_seqs)
    if self.algorithm == "crf":
      self.tagger.open(self.trained_model_name)
      preds = [self.tagger.tag(ItemSequence(feat_seq)) for feat_seq in feat_seqs]
    else:
      Xs = []
      for fs in feat_seqs:
        X = []
        for feat_dict in fs:
          x = [0] * len(self.feat_index)
          for f in feat_dict:
            if f in self.feat_index:
              x[self.feat_index[f]] = feat_dict[f]
          X.append(x)
        Xs.append(numpy.asarray(X))
      pred_ind_seqs = self.tagger.predict(Xs)
      preds = []
      for ps in pred_ind_seqs:
        pred = []
        for pred_ind in ps:
          pred.append(self.rev_label_index[pred_ind])
        preds.append(pred)
    return preds

  def train(self, feat_seqs, label_seqs):
    print >>sys.stderr, "Training on %d sequences"%len(feat_seqs)
    if self.algorithm == "crf":
      for feat_seq, label_seq in zip(feat_seqs, label_seqs):
        self.trainer.append(ItemSequence(feat_seq), label_seq)
      self.trainer.train(self.trained_model_name)
    else:
      for fs in feat_seqs:
        for feat_dict in fs:
          for f in feat_dict:
#.........这里部分代码省略.........
开发者ID:BMKEG,项目名称:exp-parser,代码行数:103,代码来源:passage_tagger.py


注:本文中的pystruct.learners.FrankWolfeSSVM.train方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。