当前位置: 首页>>代码示例>>Python>>正文


Python FrankWolfeSSVM.predict方法代码示例

本文整理汇总了Python中pystruct.learners.FrankWolfeSSVM.predict方法的典型用法代码示例。如果您正苦于以下问题:Python FrankWolfeSSVM.predict方法的具体用法?Python FrankWolfeSSVM.predict怎么用?Python FrankWolfeSSVM.predict使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pystruct.learners.FrankWolfeSSVM的用法示例。


在下文中一共展示了FrankWolfeSSVM.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: CRFTrainer

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
class CRFTrainer(object):
    def __init__(self, c_value, classifier_name='ChainCRF'):
        self.c_value = c_value
        self.classifier_name = classifier_name

        if self.classifier_name == 'ChainCRF':
            model = ChainCRF()
            self.clf = FrankWolfeSSVM(model=model, C=self.c_value, max_iter=50) 
        else:
            raise TypeError('Invalid classifier type')

    def load_data(self):
        letters = load_letters()
        X, y, folds = letters['data'], letters['labels'], letters['folds']
        X, y = np.array(X), np.array(y)
        return X, y, folds

    # X is a numpy array of samples where each sample
    # has the shape (n_letters, n_features) 
    def train(self, X_train, y_train):
        self.clf.fit(X_train, y_train)

    def evaluate(self, X_test, y_test):
        return self.clf.score(X_test, y_test)

    # Run the classifier on input data
    def classify(self, input_data):
        return self.clf.predict(input_data)[0]
开发者ID:Eyobtaf,项目名称:Python-Machine-Learning-Cookbook,代码行数:30,代码来源:crf.py

示例2: CRFTrainer

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
class CRFTrainer(object):

    def __init__(self, c_value, classifier_name='ChainCRF'):
        self.c_value = c_value
        self.classifier_name = classifier_name

        if self.classifier_name == 'ChainCRF':
            model = ChainCRF()
            self.clf = FrankWolfeSSVM(model=model, C=self.c_value, max_iter=50)
        else:
            raise TypeError('Invalid classifier type')

    def load_data(self):
        letters = load_letters()

        X, y, folds = letters['data'], letters['labels'], letters['folds']
        X, y = np.array(X), np.array(y)
        return X, y, folds

    # X是一个由样本组成的numpy数组,每个样本为(字母,数值)
    def train(self, X_train, y_train):
        self.clf.fit(X_train, y_train)

    def evaluate(self, X_test, y_test):
        return self.clf.score(X_test, y_test)

    # 对输入数据运行分类器
    def classify(self, input_data):
        return self.clf.predict(input_data)[0]
开发者ID:Tian-Yu,项目名称:Python-box,代码行数:31,代码来源:crf.py

示例3: n_cross_valid_crf

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
def n_cross_valid_crf(X, Y, K, command):
    # cross validation for crf

    if command == 'write_results':
        list_write = list()

    cv = KFold(len(X), K, shuffle=True, random_state=0)
    for traincv, testcv in cv:
        x_train, x_test = X[traincv], X[testcv]
        y_train, y_test = Y[traincv], Y[testcv]

        crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
        ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=100)
        ssvm.fit(x_train, y_train)
        y_pred = ssvm.predict(x_test)

        print 'Accuracy of linear-crf %f:' % ssvm.score(x_test, y_test)
        if command == 'metrics_F1':
            metrics_crf(y_test, y_pred)
        elif command == 'confusion_matrix':
            confusion_matrix_CRF(y_test, y_pred)
        elif command == 'write_results':
            list_write += write_results_CRF(testcv, y_test, y_pred)

        print '------------------------------------------------------'
        print '------------------------------------------------------'

    if command == 'write_results':
        list_write = sorted(list_write, key=itemgetter(0))  # sorted list based on index
        for value in list_write:
            pred_list = value[1]
            test_list = value[2]

            for i in range(0, len(pred_list)):
                print str(pred_list[i]) + '\t' + str(test_list[i])
开发者ID:hvdthong,项目名称:Transportation_NEC,代码行数:37,代码来源:feature_crf.py

示例4: test_multinomial_blocks_frankwolfe_batch

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
def test_multinomial_blocks_frankwolfe_batch():
    X, Y = generate_blocks_multinomial(n_samples=10, noise=0.3, seed=0)
    crf = GridCRF(inference_method='qpbo')
    clf = FrankWolfeSSVM(model=crf, C=1, max_iter=500, batch_mode=True)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:pystruct,项目名称:pystruct,代码行数:9,代码来源:test_frankwolfe_svm.py

示例5: test_multinomial_blocks_frankwolfe

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
def test_multinomial_blocks_frankwolfe():
    X, Y = generate_blocks_multinomial(n_samples=50, noise=0.5,
                                       seed=0)
    crf = GridCRF(inference_method='qpbo')
    clf = FrankWolfeSSVM(model=crf, C=1, line_search=True,
                         batch_mode=False, check_dual_every=500)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    assert_array_equal(Y, Y_pred)
开发者ID:DerThorsten,项目名称:pystruct,代码行数:11,代码来源:test_frankwolfe_svm.py

示例6: n_cross_valid_crf_candidate

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
def n_cross_valid_crf_candidate(list_line, X, Y, K):
    list_text = []
    for i in range(0, len(list_line), 3):
        split_first = 0
        split_second = 0

        if i % 3 == 0:
            split_first = list_line[i].strip().split('\t')
        list_text.append(split_first)

    list_text = np.array(list_text)

    cv = KFold(len(X), K, shuffle=True, random_state=0)
    list_write = []
    for traincv, testcv in cv:
        x_train, x_test = X[traincv], X[testcv]
        y_train, y_test = Y[traincv], Y[testcv]
        list_text_train, list_text_test = list_text[traincv], list_text[testcv]

        crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
        ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=10)
        ssvm.fit(x_train, y_train)
        y_pred = ssvm.predict(x_test)
        list_wrong = metrics_crf_candidate(list_text_test, y_test, y_pred)
        if len(list_write) == 0:
            list_write = list_wrong
        else:
            for i in range(0, len(list_wrong)):
                svc = list_wrong[0]
                road = list_wrong[1]
                busstop = list_wrong[2]

                list_write[0] = list_write[0] + svc
                list_write[1] = list_write[1] + road
                list_write[2] = list_write[2] + busstop

    # write_file('d:/', 'wrong_svc', list_write[0])
    # write_file('d:/', 'wrong_road', list_write[1])
    # write_file('d:/', 'wrong_busstop', list_write[2])

    write_file('d:/', 'good_svc', list_write[0])
    write_file('d:/', 'good_road', list_write[1])
    write_file('d:/', 'good_busstop', list_write[2])
开发者ID:hvdthong,项目名称:Transportation_NEC,代码行数:45,代码来源:feature_crf.py

示例7: results_CRFs

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
def results_CRFs(X_training, Y_training, X_testing, Y_testing, command):
    crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
    ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=100)
    ssvm.fit(X_training, Y_training)
    y_pred = ssvm.predict(X_testing)

    list_write = list()
    print 'Accuracy of linear-crf %f:' % ssvm.score(X_testing, Y_testing)
    if command == 'metrics_F1':
        metrics_crf(Y_testing, y_pred)
    elif command == 'confusion_matrix':
        confusion_matrix_CRF(Y_testing, y_pred)
    elif command == 'write_results':
        list_write = write_CRFs_compare(Y_testing, y_pred)
        for value in list_write:
            pred_list = value[0]
            test_list = value[1]

            for i in range(0, len(pred_list)):
                print str(pred_list[i]) + '\t' + str(test_list[i])
开发者ID:hvdthong,项目名称:Transportation_NEC,代码行数:22,代码来源:CRF_model_cmp.py

示例8: CRF_pred_label

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
def CRF_pred_label(X, Y, command):
    texts = load_demo_text(command)
    if command == 'twitter':
        convert_texts = filterText_demo(texts, 'removeLink', command)
        X_ftr = load_demo_ftr(command)
        print len(convert_texts), len(X_ftr)
        path_write = 'D:/Project/Transportation_SMU-NEC_collaboration/Data_demo_Dec_2015/twitter'
        name_write = 'pred_label_' + command

    elif command == 'sgforums':
        convert_texts = filterText_demo(texts, 'removePunc', command)
        X_ftr = load_demo_ftr(command)
        print len(convert_texts), len(X_ftr)
        path_write = 'D:/Project/Transportation_SMU-NEC_collaboration/Data_demo_Dec_2015/sgforums'
        name_write = 'pred_label_' + command

    elif command == 'facebook':
        convert_texts = filterText_demo(texts, 'removeLink', command)
        X_ftr = load_demo_ftr(command)
        print len(convert_texts), len(X_ftr)
        path_write = 'D:/Project/Transportation_SMU-NEC_collaboration/Data_demo_Dec_2015/facebook'
        name_write = 'pred_label_' + command

    crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
    ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=100)
    ssvm.fit(X, Y)
    y_pred = ssvm.predict(X_ftr)

    list_write = list()
    for line in y_pred:
        labels = ''
        for label in line:
            labels += str(label) + '\t'
        list_write.append(labels.strip())

    write_file(path_write, name_write, list_write)
开发者ID:hvdthong,项目名称:Transportation_NEC,代码行数:38,代码来源:CRF_model_pred.py

示例9: time

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
subgradient_svm.fit(X_train_bias, y_train)
time_subgradient_svm = time() - start
y_pred = np.hstack(subgradient_svm.predict(X_test_bias))

print("Score with pystruct subgradient ssvm: %f (took %f seconds)"
      % (np.mean(y_pred == y_test), time_subgradient_svm))

# the standard one-vs-rest multi-class would probably be as good and faster
# but solving a different model
libsvm = LinearSVC(multi_class='crammer_singer', C=.1)
start = time()
libsvm.fit(X_train, y_train)
time_libsvm = time() - start
print("Score with sklearn and libsvm: %f (took %f seconds)"
      % (libsvm.score(X_test, y_test), time_libsvm))


start = time()
fw_bc_svm.fit(X_train_bias, y_train)
y_pred = np.hstack(fw_bc_svm.predict(X_test_bias))
time_fw_bc_svm = time() - start
print("Score with pystruct frankwolfe block coordinate ssvm: %f (took %f seconds)" %
      (np.mean(y_pred == y_test), time_fw_bc_svm))

start = time()
fw_batch_svm.fit(X_train_bias, y_train)
y_pred = np.hstack(fw_batch_svm.predict(X_test_bias))
time_fw_batch_svm = time() - start
print("Score with pystruct frankwolfe batch ssvm: %f (took %f seconds)" %
      (np.mean(y_pred == y_test), time_fw_batch_svm))
开发者ID:DATAQC,项目名称:pystruct,代码行数:32,代码来源:multi_class_svm.py

示例10: trainModel_Basic

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
def trainModel_Basic(num_iter=5,inference="qpbo",trainer="NSlack",num_train=2,num_test=1,C=0.1,edges="180x180_dist1_diag0",inputs=[1,1,1,1,1,1],features="all",directed=False,savePred=False):
    
    
    padding=(30,30,30,30)
    
    
    if directed==True:
        features +='+directed'
        
    resultsDir = os.getcwd()+'/CRFResults'
    nameLen = len(os.listdir(resultsDir))
    edgeFeature = edges
    filename=str(nameLen)+'_CRF_iter_'+str(num_iter)+"_"+inference+"_"+trainer+"_"+features+"_"+str(num_train)+"_"+str(num_test)+"_"+edgeFeature
        
    
    print "Loading training slices"
    
    
    start = time.clock()
    train =extractSlices2(train_path,num_train,padding,inputs=inputs)
    end= time.clock()
    train_load_time = (end-start)/60.0
    
    [trainLayers,trainTruth,sliceShape] = train
    print "Training slices loaded in %f" % (train_load_time)
    
    n_features= len(trainLayers[0][0,0])
    print "Layer shape is : "
    print trainLayers[0].shape
    
    print "Training the model"
    edges= np.load("/home/bmi/CRF/edges/"+edges+".npy")
    
    G = [edges for x in trainLayers]
   
    print trainLayers[0].shape
    
    trainLayers = np.array( [x.reshape((sliceShape[0]*sliceShape[1],n_features)) for x in trainLayers] )
    trainTruth = np.array( [x.reshape((sliceShape[0]*sliceShape[1],)).astype(int) for x in trainTruth] )
    
    if inference=='ogm':
        crf = GraphCRF(inference_method=('ogm',{'alg':'fm'}),directed=directed)
    else:
        crf = GraphCRF(inference_method=inference,directed=directed)
    
    if trainer=="Frank":
        svm = FrankWolfeSSVM(model = crf,max_iter=num_iter,C=C,n_jobs=6,verbose=1)
    elif trainer=="NSlack":
        svm = NSlackSSVM(model = crf,max_iter=num_iter,C=C,n_jobs=-1,verbose=1)
    else:
        svm = OneSlackSSVM(model = crf,max_iter=num_iter,C=C,n_jobs=-1,verbose=1)
    
    
    start = time.clock()
    asdf = zip(trainLayers,G)
    svm.fit(asdf,trainTruth)
    end = time.clock()
    train_time = (end-start)/60.0
    print "The training took %f" % (train_time)
    print "Model parameter size :"
    print svm.w.shape
    
    print "making predictions on train data"
    predTrain = svm.predict(asdf)
    trainDice=[]
    for i in range(len(trainLayers)):
        diceScore = accuracy(predTrain[i],trainTruth[i])
        trainDice.append(diceScore)
    meanTrainDice =  sum(trainDice)/len(trainLayers)
    
    del trainLayers,trainTruth
    
################################################################################################    
    overallDicePerPatient=[]           # For overall test Dice 
    extDicePerPatient=[]
    PatientTruthLayers=[]
    PatientPredLayers=[]
    PREC=[]
    RECALL=[]
    F1=[]
    LayerwiseDiceTotal=[]
    
    
    
    
    testResultFile = open(os.getcwd()+"/CRFResults/"+filename+".csv",'a')
    testResultFile.write("folderName,numLayers, Overall Dice, precision , recall, F1"+"\n")
    
    
    counter=0
    print "Loading the test slices"
    for folder in os.listdir(test_path):
        path = test_path + "/" + folder
        layerDiceScores=''
#        print path
        
        data = extractTestSlices2(path,padding,inputs=inputs)
        if data!=0:
            [testLayers,testTruth,sliceShape,startSlice,endSlice] = data
        
#.........这里部分代码省略.........
开发者ID:rsk2327,项目名称:Brats_CRF,代码行数:103,代码来源:BratsCRFBasicWhole.py

示例11: max

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
rnd = np.random.RandomState(1)
selected = rnd.randint(len(y_test), size=n_words)
max_word_len = max([len(y_) for y_ in y_test[selected]])
fig, axes = plt.subplots(n_words, max_word_len, figsize=(10, 10))
fig.subplots_adjust(wspace=0)
fig.text(0.2, 0.05, 'GT', color="#00AA00", size=25)
fig.text(0.4, 0.05, 'NN', color="#5555FF", size=25)
fig.text(0.6, 0.05, 'LCCRF', color="#FF5555", size=25)
fig.text(0.8, 0.05, 'LCCRF+NN', color="#FFD700", size=25)

fig.text(0.05, 0.5, 'Word', color="#000000", size=25)
fig.text(0.5, 0.95, 'Letters', color="#000000", size=25)

for ind, axes_row in zip(selected, axes):
    y_pred_nn = nn_predictions_test[ind].argmax(axis=1)
    y_pred_chain = chain_ssvm.predict([X_test[ind]])[0]
    y_pred_chain_nn = chain_ssvm_nn.predict([nn_predictions_test[ind]])[0]

    for i, (a, image, y_true, y_nn, y_chain, y_chain_nn) in enumerate(
            zip(axes_row, X_test[ind], y_test[ind], y_pred_nn, y_pred_chain, y_pred_chain_nn)):
        a.matshow(image.reshape(16, 8), cmap=plt.cm.Greys)
        a.text(0, 3, abc[y_true], color="#00AA00", size=25)    # Green
        a.text(0, 14, abc[y_nn], color="#5555FF", size=25)    # Blue
        a.text(5, 14, abc[y_chain], color="#FF5555", size=25)  # Red
        a.text(5, 3, abc[y_chain_nn], color="#FFD700", size=25)     # Yellow
        a.set_xticks(())
        a.set_yticks(())
    for ii in range(i + 1, max_word_len):
        axes_row[ii].set_visible(False)

w = chain_ssvm_nn.w[26 * 26:].reshape(26, 26)
开发者ID:shohad25,项目名称:PGM,代码行数:33,代码来源:crf_with_nn_last.py

示例12: classify

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
def classify(traincorpus, testcorpus):

    model = ChainCRF()
    ssvm = FrankWolfeSSVM(model=model, C=.1, max_iter=10)
	
    pos_lexicon = load_lexicon("lexica/restaurants/ote/pos")
    term_lexicon = load_lexicon("lexica/restaurants/ote/term")
    pre1_lexicon = load_lexicon("lexica/restaurants/ote/prefix1")
    pre2_lexicon = load_lexicon("lexica/restaurants/ote/prefix2")
    pre3_lexicon = load_lexicon("lexica/restaurants/ote/prefix3")
    suf1_lexicon = load_lexicon("lexica/restaurants/ote/suffix1")
    suf2_lexicon = load_lexicon("lexica/restaurants/ote/suffix2")
    suf3_lexicon = load_lexicon("lexica/restaurants/ote/suffix3")
    
    train_sentences = [] #the list to be used to store our features for the words    
    sentence_labels = [] #the list to be used for labeling if a word is an aspect term

    print('Creating train feature vectors...')

    #extracting sentences and appending them labels
    for instance in traincorpus.corpus:
        words = nltk.word_tokenize(instance.text)
        
        tags = nltk.pos_tag(words)
        tags_list = [] #the pos list
        for _, t in tags:
                tags_list.append(t)

        last_prediction = ""

        train_words = []
        word_labels = []
        for i, w in enumerate(words):
            word_found = False
            if words[i] == w:
                word_found = True
                
                pos_feats = []
                previous_pos_feats = []
                second_previous_pos_feats = []
                next_pos_feats = []
                second_next_pos_feats = []
                morph_feats = []
                term_feats = []
                pre1_feats = []
                pre2_feats = []
                pre3_feats = []
                suf1_feats = []
                suf2_feats = []
                suf3_feats = []

                target_labels = []
                train_word_features = []

                #prefix of lengths 1,2,3 lexicon features
                for p1 in pre1_lexicon:
                    if p1 == w[0]:
                        pre1_feats.append(1)
                    else:
                        pre1_feats.append(0)

                for p2 in pre2_lexicon:
                    if len(w) > 1:
                        if p2 == w[0]+w[1]:
                            pre2_feats.append(1)
                        else:
                            pre2_feats.append(0)
                    else:
                        pre2_feats.append(0)

                for p3 in pre3_lexicon:
                    if len(w) > 2:
                        if p3 == w[0]+w[1]+w[2]:
                            pre3_feats.append(1)
                        else:
                            pre3_feats.append(0)
                    else:
                        pre3_feats.append(0)

                #suffix of lengths 1,2,3 lexicon features
                for s1 in suf1_lexicon:
                    if s1 == w[-1]:
                        suf1_feats.append(1)
                    else:
                        suf1_feats.append(0)

                for s2 in suf2_lexicon:
                    if len(w) > 1:
                        if s2 == w[-2]+w[-1]:
                            suf2_feats.append(1)
                        else:
                            suf2_feats.append(0)
                    else:
                        suf2_feats.append(0)

                for s3 in suf3_lexicon:
                    if len(w) > 2:
                        if s3 == w[-3]+w[-2]+w[-1]:
                            suf3_feats.append(1)
                        else:
#.........这里部分代码省略.........
开发者ID:nlpaueb,项目名称:aueb-absa,代码行数:103,代码来源:ote_constrained_restaurants.py

示例13: max

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
rnd = np.random.RandomState(1)
selected = rnd.randint(len(y_test), size=n_words)
max_word_len = max([len(y_) for y_ in y_test[selected]])
fig, axes = plt.subplots(n_words, max_word_len, figsize=(10, 10))
fig.subplots_adjust(wspace=0)
fig.text(0.2, 0.05, 'GT', color="#00AA00", size=25)
fig.text(0.4, 0.05, 'SVM', color="#5555FF", size=25)
fig.text(0.6, 0.05, 'UD-LCCRF', color="#FF5555", size=25)
fig.text(0.8, 0.05, 'D-LCCRF', color="#FFD700", size=25)

fig.text(0.05, 0.5, 'Word', color="#000000", size=25)
fig.text(0.5, 0.95, 'Letters', color="#000000", size=25)

for ind, axes_row in zip(selected, axes):
    y_pred_svm = svm.predict(X_test[ind])
    y_pred_undirected = undirected_ssvm.predict([X_test[ind]])[0]
    y_pred_crf = ssvm.predict([X_test[ind]])[0]

    for i, (a, image, y_true, y_svm, y_undirected, y_crf) in enumerate(
            zip(axes_row, X_test[ind], y_test[ind], y_pred_svm, y_pred_undirected, y_pred_crf)):
        a.matshow(image.reshape(16, 8), cmap=plt.cm.Greys)
        a.text(0, 3, abc[y_true], color="#00AA00", size=25)    # Green
        a.text(0, 14, abc[y_svm], color="#5555FF", size=25)    # Blue
        a.text(5, 14, abc[y_undirected], color="#FF5555", size=25)  # Red
        a.text(5, 3, abc[y_crf], color="#FFD700", size=25)     # Yellow
        a.set_xticks(())
        a.set_yticks(())
    for ii in range(i + 1, max_word_len):
        axes_row[ii].set_visible(False)

w = ssvm.w[26 * 8 * 16:].reshape(26, 26)
开发者ID:shohad25,项目名称:PGM,代码行数:33,代码来源:plot_letters_directed_vs_undirected.py

示例14: print

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
ssvm.fit(X_train, y_train)

print("Test score with chain CRF: %f" % ssvm.score(X_test, y_test))

print("Test score with linear SVM: %f" % svm.score(np.vstack(X_test), np.hstack(y_test)))

# plot some word sequenced
n_words = 4
rnd = np.random.RandomState(1)
selected = rnd.randint(len(y_test), size=n_words)
max_word_len = max([len(y_) for y_ in y_test[selected]])
fig, axes = plt.subplots(n_words, max_word_len, figsize=(10, 10))
fig.subplots_adjust(wspace=0)
for ind, axes_row in zip(selected, axes):
    y_pred_svm = svm.predict(X_test[ind])
    y_pred_chain = ssvm.predict([X_test[ind]])[0]
    for i, (a, image, y_true, y_svm, y_chain) in enumerate(
        zip(axes_row, X_test[ind], y_test[ind], y_pred_svm, y_pred_chain)
    ):
        a.matshow(image.reshape(16, 8), cmap=plt.cm.Greys)
        a.text(0, 3, abc[y_true], color="#00AA00", size=25)
        a.text(0, 14, abc[y_svm], color="#5555FF", size=25)
        a.text(5, 14, abc[y_chain], color="#FF5555", size=25)
        a.set_xticks(())
        a.set_yticks(())
    for ii in range(i + 1, max_word_len):
        axes_row[ii].set_visible(False)

plt.matshow(ssvm.w[26 * 8 * 16 :].reshape(26, 26))
plt.colorbar()
plt.title("Transition parameters of the chain CRF.")
开发者ID:pystruct,项目名称:pystruct.github.io,代码行数:33,代码来源:plot_letters.py

示例15: ChainCRF

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import predict [as 别名]
list_x.append(np.array(x_1))
list_y.append(y)
list_y.append(y_1)

# crf = ChainCRF(inference_method='max-product')
crf = ChainCRF(inference_method="max-product", directed=False)
ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=100)
ssvm.fit(np.array(list_x), np.array(list_y))

test_x = np.array(list_x)
test_y = np.array(list_y)
# print np.array(list_x)[0].shape[1]

x_test = [[1, 0, 0, 0], [1, 0, 1, 0]]
list_x_test = list()
list_x_test.append(x_test)

pred = ssvm.predict(np.array(list_x_test))
# for value in pred:
#     print value


# file_model = pickle.dumps(ssvm)
# load_model = pickle.loads(file_model)
joblib.dump(ssvm, "d:/filename.pkl")
load_model = joblib.load("d:/filename.pkl")
output = load_model.predict(np.array(list_x_test))

for value in output:
    print value
开发者ID:hvdthong,项目名称:Transportation_NEC,代码行数:32,代码来源:linearCRF_testmodel.py


注:本文中的pystruct.learners.FrankWolfeSSVM.predict方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。