当前位置: 首页>>代码示例>>Python>>正文


Python FrankWolfeSSVM.score方法代码示例

本文整理汇总了Python中pystruct.learners.FrankWolfeSSVM.score方法的典型用法代码示例。如果您正苦于以下问题:Python FrankWolfeSSVM.score方法的具体用法?Python FrankWolfeSSVM.score怎么用?Python FrankWolfeSSVM.score使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pystruct.learners.FrankWolfeSSVM的用法示例。


在下文中一共展示了FrankWolfeSSVM.score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: CRFTrainer

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
class CRFTrainer(object):

    def __init__(self, c_value, classifier_name='ChainCRF'):
        self.c_value = c_value
        self.classifier_name = classifier_name

        if self.classifier_name == 'ChainCRF':
            model = ChainCRF()
            self.clf = FrankWolfeSSVM(model=model, C=self.c_value, max_iter=50)
        else:
            raise TypeError('Invalid classifier type')

    def load_data(self):
        letters = load_letters()

        X, y, folds = letters['data'], letters['labels'], letters['folds']
        X, y = np.array(X), np.array(y)
        return X, y, folds

    # X是一个由样本组成的numpy数组,每个样本为(字母,数值)
    def train(self, X_train, y_train):
        self.clf.fit(X_train, y_train)

    def evaluate(self, X_test, y_test):
        return self.clf.score(X_test, y_test)

    # 对输入数据运行分类器
    def classify(self, input_data):
        return self.clf.predict(input_data)[0]
开发者ID:Tian-Yu,项目名称:Python-box,代码行数:31,代码来源:crf.py

示例2: n_cross_valid_crf

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
def n_cross_valid_crf(X, Y, K, command):
    # cross validation for crf

    if command == 'write_results':
        list_write = list()

    cv = KFold(len(X), K, shuffle=True, random_state=0)
    for traincv, testcv in cv:
        x_train, x_test = X[traincv], X[testcv]
        y_train, y_test = Y[traincv], Y[testcv]

        crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
        ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=100)
        ssvm.fit(x_train, y_train)
        y_pred = ssvm.predict(x_test)

        print 'Accuracy of linear-crf %f:' % ssvm.score(x_test, y_test)
        if command == 'metrics_F1':
            metrics_crf(y_test, y_pred)
        elif command == 'confusion_matrix':
            confusion_matrix_CRF(y_test, y_pred)
        elif command == 'write_results':
            list_write += write_results_CRF(testcv, y_test, y_pred)

        print '------------------------------------------------------'
        print '------------------------------------------------------'

    if command == 'write_results':
        list_write = sorted(list_write, key=itemgetter(0))  # sorted list based on index
        for value in list_write:
            pred_list = value[1]
            test_list = value[2]

            for i in range(0, len(pred_list)):
                print str(pred_list[i]) + '\t' + str(test_list[i])
开发者ID:hvdthong,项目名称:Transportation_NEC,代码行数:37,代码来源:feature_crf.py

示例3: CRFTrainer

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
class CRFTrainer(object):
    def __init__(self, c_value, classifier_name='ChainCRF'):
        self.c_value = c_value
        self.classifier_name = classifier_name

        if self.classifier_name == 'ChainCRF':
            model = ChainCRF()
            self.clf = FrankWolfeSSVM(model=model, C=self.c_value, max_iter=50) 
        else:
            raise TypeError('Invalid classifier type')

    def load_data(self):
        letters = load_letters()
        X, y, folds = letters['data'], letters['labels'], letters['folds']
        X, y = np.array(X), np.array(y)
        return X, y, folds

    # X is a numpy array of samples where each sample
    # has the shape (n_letters, n_features) 
    def train(self, X_train, y_train):
        self.clf.fit(X_train, y_train)

    def evaluate(self, X_test, y_test):
        return self.clf.score(X_test, y_test)

    # Run the classifier on input data
    def classify(self, input_data):
        return self.clf.predict(input_data)[0]
开发者ID:Eyobtaf,项目名称:Python-Machine-Learning-Cookbook,代码行数:30,代码来源:crf.py

示例4: test_svm_as_crf_pickling_batch

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
def test_svm_as_crf_pickling_batch():

    iris = load_iris()
    X, y = iris.data, iris.target

    X_ = [(np.atleast_2d(x), np.empty((0, 2), dtype=np.int)) for x in X]
    Y = y.reshape(-1, 1)

    X_train, X_test, y_train, y_test = train_test_split(X_, Y, random_state=1)
    _, file_name = mkstemp()

    pbl = GraphCRF(n_features=4, n_states=3, inference_method='unary')
    logger = SaveLogger(file_name)
    svm = FrankWolfeSSVM(pbl, C=10, logger=logger, max_iter=50, batch_mode=False)
    svm.fit(X_train, y_train)

    assert_less(.97, svm.score(X_test, y_test))
    assert_less(.97, logger.load().score(X_test, y_test))
开发者ID:pystruct,项目名称:pystruct,代码行数:20,代码来源:test_frankwolfe_svm.py

示例5: results_CRFs

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
def results_CRFs(X_training, Y_training, X_testing, Y_testing, command):
    crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
    ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=100)
    ssvm.fit(X_training, Y_training)
    y_pred = ssvm.predict(X_testing)

    list_write = list()
    print 'Accuracy of linear-crf %f:' % ssvm.score(X_testing, Y_testing)
    if command == 'metrics_F1':
        metrics_crf(Y_testing, y_pred)
    elif command == 'confusion_matrix':
        confusion_matrix_CRF(Y_testing, y_pred)
    elif command == 'write_results':
        list_write = write_CRFs_compare(Y_testing, y_pred)
        for value in list_write:
            pred_list = value[0]
            test_list = value[1]

            for i in range(0, len(pred_list)):
                print str(pred_list[i]) + '\t' + str(test_list[i])
开发者ID:hvdthong,项目名称:Transportation_NEC,代码行数:22,代码来源:CRF_model_cmp.py

示例6: chaincrf_test

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
def chaincrf_test():
	num_pics = 3000
	X, Y= load_pictures(num_pics)
	X = np.array(X)
	Y = np.array(Y)

	print X.shape
	print Y.shape

	# 0: pixel, 1: row, 2: picture
	mode = 0
	outstr = "Test score with data arranged by "

	if mode == 0:
		X, Y = arrange_by_pixel(X, Y)
		outstr += "pixel:"
	elif mode == 1:
		X, Y = arrange_by_row(X, Y)
		outstr += "row:"
	elif mode == 2:
		X, Y = arrange_by_picture(X, Y)
		outstr += "picture:"

	print X.shape
	print Y.shape

	#print X.shape, Y.shape
	train_pct = 0.66
	test_pct = 1 - train_pct
	X_train = X[0:math.floor(train_pct * num_pics)]
	X_test = X[math.floor(test_pct*num_pics):]
	Y_train = Y[0:math.floor(train_pct * num_pics)]
	Y_test = Y[math.floor(test_pct*num_pics):]

	model = ChainCRF()
	ssvm = FrankWolfeSSVM(model=model, C=.1, max_iter=10)
	# #print X_train.shape, Y_train.shape
	ssvm.fit(X_train, Y_train)
	results = ssvm.score(X_test, Y_test)
	print outstr
	print results
开发者ID:nikhilch,项目名称:eecs349-final-project,代码行数:43,代码来源:tiftest.py

示例7: LinearRegression

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
chain_ssvm.fit(nn_predictions_train, y_train)


# # Create linear regression object
# regr = LinearRegression()
# # Train the model using the training sets
# regr.fit(np.vstack(nn_predictions_train), np.hstack(y_train))

# print("Test score with linear regression: %f" % regr.score(np.vstack(nn_predictions_test),
#                                                    np.hstack(y_test)))

print("Test score with linear NN: 84.15%")

print("Test score with linear SVM: %f" % svm.score(np.vstack(X_test),
                                                   np.hstack(y_test)))
print("Test score with CRF: %f" % ssvm.score(nn_predictions_test, y_test))

print("Test score with Linear Chain CRF: %f" % chain_ssvm.score(nn_predictions_test, y_test))

# # plot some word sequenced
# n_words = 4
# rnd = np.random.RandomState(1)
# selected = rnd.randint(len(y_test), size=n_words)
# max_word_len = max([len(y_) for y_ in y_test[selected]])
# fig, axes = plt.subplots(n_words, max_word_len, figsize=(10, 10))
# fig.subplots_adjust(wspace=0)
# fig.text(0.2, 0.05, 'GT', color="#00AA00", size=25)
# fig.text(0.4, 0.05, 'SVM', color="#5555FF", size=25)
# fig.text(0.6, 0.05, 'LCCRF', color="#FF5555", size=25)
# fig.text(0.8, 0.05, 'CRF', color="#FFD700", size=25)
开发者ID:shohad25,项目名称:PGM,代码行数:32,代码来源:crf_with_nn.py

示例8: print

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
# print("Shuffle results")
# features, labels = util.shuffle(features, labels)


trsize = int(0.7*len(labels))
X_train = features[1:trsize]
y_train = labels[1:trsize]

X_test = features[trsize+1:]
y_test = labels[trsize+1:]

# X_train = X_test = features
# y_train = y_test = labels
# trsize = len(labels)

# Evaluate the chain
model = ChainCRF()
C=0.0001
max_iter=50
ssvm = FrankWolfeSSVM(model=model, C=C, max_iter=max_iter, verbose=True)
print(ssvm)
print(ssvm.fit(X_train, y_train))
print(ssvm.w)
trscore = ssvm.score(X_train,y_train)
# testscore = ssvm.score(X_test,y_test)
print("Training score: {0}".format(trscore))
# print("Test score: {0}".format(testscore))

# Save the result
# util.saveToSQL(featureset, C, max_iter, trsize, trscore, 2)
开发者ID:tvogels,项目名称:boilerplate,代码行数:32,代码来源:crf.py

示例9: LinearSVC

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
# convenient
X, y = np.array(X), np.array(y)
X_train, X_test = X[folds == 1], X[folds != 1]
y_train, y_test = y[folds == 1], y[folds != 1]

# Train linear SVM
svm = LinearSVC(dual=False, C=0.1)
# flatten input
svm.fit(np.vstack(X_train), np.hstack(y_train))

# Train linear chain CRF
model = ChainCRF()
ssvm = FrankWolfeSSVM(model=model, C=0.1, max_iter=11)
ssvm.fit(X_train, y_train)

print("Test score with chain CRF: %f" % ssvm.score(X_test, y_test))

print("Test score with linear SVM: %f" % svm.score(np.vstack(X_test), np.hstack(y_test)))

# plot some word sequenced
n_words = 4
rnd = np.random.RandomState(1)
selected = rnd.randint(len(y_test), size=n_words)
max_word_len = max([len(y_) for y_ in y_test[selected]])
fig, axes = plt.subplots(n_words, max_word_len, figsize=(10, 10))
fig.subplots_adjust(wspace=0)
for ind, axes_row in zip(selected, axes):
    y_pred_svm = svm.predict(X_test[ind])
    y_pred_chain = ssvm.predict([X_test[ind]])[0]
    for i, (a, image, y_true, y_svm, y_chain) in enumerate(
        zip(axes_row, X_test[ind], y_test[ind], y_pred_svm, y_pred_chain)
开发者ID:pystruct,项目名称:pystruct.github.io,代码行数:33,代码来源:plot_letters.py

示例10: range

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
 
  
  X = X[:100]
  y = y[:100]
  
  
  #Add edges
  for i in range(X.shape[0]):
      X[i] = [X[i], np.vstack([(0,1),(2,2)])]
      
  model = GraphCRF(directed=True, inference_method="max-product")
  
  X_train, X_test, y_train, y_test = sklearn.cross_validation.train_test_split(X,y, test_size =0.5, random_state=0)
  ssvm = FrankWolfeSSVM(model=model, C=.1, max_iter=10)
  ssvm.fit(X_train,y_train)
  print ssvm.score(X_test, y_test)
  print ssvm.predict(X_test)
  print y_test
  
  '''
  for i in range(X.shape[0]):
      
      X_train, X_test = X[] 
      X_test = X[i]
      y_test = y[i]
      X_train = np.delete(X,i)
      y_train = np.delete(y,i)
      
  
      ssvm = FrankWolfeSSVM(model=model, C=.1, max_iter=10)
      ssvm.fit(X_train,y_train)
开发者ID:harusametime,项目名称:Gradian,代码行数:33,代码来源:segment.py

示例11: run_crf

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
def run_crf(w2v, words_before, words_after, shallow_parse):

    pmids_dict, pmids, abstracts, lbls, vectorizer, groups_map, one_hot, dicts = \
        parse_summerscales.get_tokens_and_lbls(
                make_pmids_dict=True, sen=True)


    """
        Create model
    """
    model = ChainCRF(directed=False)
    ssvm = FrankWolfeSSVM(model=model, C=.1, max_iter=30)

    all_pmids = pmids_dict.keys()
    n = len(all_pmids)
    n_folds = 5
    kf = KFold(n, random_state=1337, shuffle=True, n_folds=n_folds)
    fold_gi = []


    for fold_idx, (train, test) in enumerate(kf):
        print("on fold %s" % fold_idx)
        train_pmids = [all_pmids[pmid_idx] for pmid_idx in train]
        test_pmids  = [all_pmids[pmid_idx] for pmid_idx in test]
        print('loading data...')
        train_x, train_y = abstract2features(pmids_dict, words_before, w2v, shallow_parse)
        test_x, test_y = abstract2features(pmids_dict, words_after, w2v, shallow_parse)

        print('loaded data...')
        print 'training...'
        ssvm.fit(train_x, train_y)

        print ssvm.score(test_x, test_y)

        for i, (pmid, x, y) in enumerate(zip(test_pmids, test_x, test_y)):
            abstract_words, _, _= pmids_dict[pmid]

            print(pmid)

            # predict() takes in a list returns another list
            prediction = ssvm.predict([x]).pop(0)

            predicted = ''
            output = ''

            if len(prediction) > 0:

                for p in prediction:
                    if p == 1:
                        print "word: {}".format(abstract_words[p])
                        if n == 0:
                            predicted += abstract_words[p]
                        else:
                            predicted += ' ' + abstract_words[p]

                if not predicted == '':
                    output = 'predicted: {}'.format(predicted)
                else:
                    output = 'Predicted nothing!'
            else:
                output = 'Predicted nothing!'
            print output
开发者ID:bwallace,项目名称:Deep-PICO,代码行数:64,代码来源:crf_pystruct.py

示例12: ChainCRF

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
# Train CRF
model = ChainCRF(directed=True)
ssvm = FrankWolfeSSVM(model=model, C=.1, max_iter=11)
ssvm.fit(np.vstack(X_train).reshape((5375, 1, 128)), np.hstack(y_train).reshape(5375, 1))


# Train linear chain CRF
chain_model = ChainCRF(directed=True)
chain_ssvm = FrankWolfeSSVM(model=chain_model, C=.1, max_iter=11, verbose=0)
chain_ssvm.fit(X_train, y_train)


print("Test score with linear SVM: %f" % svm.score(np.vstack(X_test),
                                                   np.hstack(y_test)))
print("Test score with CRF: %f" % ssvm.score(X_test, y_test))

print("Test score with Linear Chain CRF: %f" % chain_ssvm.score(X_test, y_test))

# plot some word sequenced
n_words = 4
rnd = np.random.RandomState(1)
selected = rnd.randint(len(y_test), size=n_words)
max_word_len = max([len(y_) for y_ in y_test[selected]])
fig, axes = plt.subplots(n_words, max_word_len, figsize=(10, 10))
fig.subplots_adjust(wspace=0)
fig.text(0.2, 0.05, 'GT', color="#00AA00", size=25)
fig.text(0.4, 0.05, 'SVM', color="#5555FF", size=25)
fig.text(0.6, 0.05, 'LCCRF', color="#FF5555", size=25)
fig.text(0.8, 0.05, 'CRF', color="#FFD700", size=25)
开发者ID:shohad25,项目名称:PGM,代码行数:31,代码来源:plot_letters.py

示例13: range

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
y_half_train = np.ones_like(X_half_train)

for ind in range(0, X_train.shape[0]):
    # n_letters = 2 #fixed len of word
    n_letters = int(np.floor(X_train[ind].shape[0] / 2))
    X_half_train[2*ind] = X_train[ind][0:n_letters]
    X_half_train[2*ind+1] = X_train[ind][n_letters:]
    y_half_train[2*ind] = y_train[ind][0:n_letters]
    y_half_train[2*ind+1] = y_train[ind][n_letters:]
# Train the model
half_ssvm.fit(X_half_train, y_half_train)


print("Test score with linear SVM: %f" % svm.score(np.vstack(X_test),
                                                   np.hstack(y_test)))
print("Test score with FULL LCCRF: %f" % ssvm.score(X_test, y_test))

print("Test score with HALF LCCRF: %f" % half_ssvm.score(X_test, y_test))

# plot some word sequenced
n_words = 4
rnd = np.random.RandomState(1)
selected = rnd.randint(len(y_test), size=n_words)
max_word_len = max([len(y_) for y_ in y_test[selected]])
fig, axes = plt.subplots(n_words, max_word_len, figsize=(10, 10))
fig.subplots_adjust(wspace=0)
fig.text(0.2, 0.05, 'GT', color="#00AA00", size=25)
fig.text(0.4, 0.05, 'SVM', color="#5555FF", size=25)
fig.text(0.6, 0.05, 'HALF-LCCRF', color="#FF5555", size=25)
fig.text(0.8, 0.05, 'FULL-LCCRF', color="#FFD700", size=25)
开发者ID:shohad25,项目名称:PGM,代码行数:32,代码来源:plot_letters_half_words.py

示例14: ChainCRF

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
# Train directed chain CRF
model = ChainCRF(directed=True)
ssvm = FrankWolfeSSVM(model=model, C=.1, max_iter=11)
ssvm.fit(X_train, y_train)


# Train undirected chain CRF
undirected_model = ChainCRF(directed=False)
undirected_ssvm = FrankWolfeSSVM(model=undirected_model, C=.1, max_iter=11, verbose=0)
undirected_ssvm.fit(X_train, y_train)


print("Test score with linear SVM: %f" % svm.score(np.vstack(X_test),
                                                   np.hstack(y_test)))
print("Test score with directed LCCRF: %f" % ssvm.score(X_test, y_test))

print("Test score with undirected LCCRF: %f" % undirected_ssvm.score(X_test, y_test))

# plot some word sequenced
n_words = 4
rnd = np.random.RandomState(1)
selected = rnd.randint(len(y_test), size=n_words)
max_word_len = max([len(y_) for y_ in y_test[selected]])
fig, axes = plt.subplots(n_words, max_word_len, figsize=(10, 10))
fig.subplots_adjust(wspace=0)
fig.text(0.2, 0.05, 'GT', color="#00AA00", size=25)
fig.text(0.4, 0.05, 'SVM', color="#5555FF", size=25)
fig.text(0.6, 0.05, 'UD-LCCRF', color="#FF5555", size=25)
fig.text(0.8, 0.05, 'D-LCCRF', color="#FFD700", size=25)
开发者ID:shohad25,项目名称:PGM,代码行数:31,代码来源:plot_letters_directed_vs_undirected.py

示例15: print

# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import score [as 别名]
import loader
import util
from sklearn import preprocessing


directory = "/Users/thijs/dev/boilerplate/src/main/resources/dataset/"
featureset = "features10"

print("Load files")
features, labels = \
  loader.loadBinary(featureset+'.csv', 'labels.csv', directory)

# print("Shuffle results")
# features, labels = util.shuffle(features, labels)

print("Loaded")
# print(labels)

# features = preprocessing.scale(features)


from pystruct.models import BinaryClf
from pystruct.learners import (NSlackSSVM, OneSlackSSVM,
                               SubgradientSSVM, FrankWolfeSSVM)
clf = FrankWolfeSSVM(BinaryClf(),verbose=True)
# print(clf)
clf.fit(features,labels)
trscore = clf.score(features,labels)

# print("Training score: {0}".format(trscore))
print("Klaar")
开发者ID:tvogels,项目名称:boilerplate,代码行数:33,代码来源:binarysvm.py


注:本文中的pystruct.learners.FrankWolfeSSVM.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。