本文整理汇总了Python中pystruct.learners.FrankWolfeSSVM.fit方法的典型用法代码示例。如果您正苦于以下问题:Python FrankWolfeSSVM.fit方法的具体用法?Python FrankWolfeSSVM.fit怎么用?Python FrankWolfeSSVM.fit使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pystruct.learners.FrankWolfeSSVM
的用法示例。
在下文中一共展示了FrankWolfeSSVM.fit方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: n_cross_valid_crf
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def n_cross_valid_crf(X, Y, K, command):
# cross validation for crf
if command == 'write_results':
list_write = list()
cv = KFold(len(X), K, shuffle=True, random_state=0)
for traincv, testcv in cv:
x_train, x_test = X[traincv], X[testcv]
y_train, y_test = Y[traincv], Y[testcv]
crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=100)
ssvm.fit(x_train, y_train)
y_pred = ssvm.predict(x_test)
print 'Accuracy of linear-crf %f:' % ssvm.score(x_test, y_test)
if command == 'metrics_F1':
metrics_crf(y_test, y_pred)
elif command == 'confusion_matrix':
confusion_matrix_CRF(y_test, y_pred)
elif command == 'write_results':
list_write += write_results_CRF(testcv, y_test, y_pred)
print '------------------------------------------------------'
print '------------------------------------------------------'
if command == 'write_results':
list_write = sorted(list_write, key=itemgetter(0)) # sorted list based on index
for value in list_write:
pred_list = value[1]
test_list = value[2]
for i in range(0, len(pred_list)):
print str(pred_list[i]) + '\t' + str(test_list[i])
示例2: CRFTrainer
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
class CRFTrainer(object):
def __init__(self, c_value, classifier_name='ChainCRF'):
self.c_value = c_value
self.classifier_name = classifier_name
if self.classifier_name == 'ChainCRF':
model = ChainCRF()
self.clf = FrankWolfeSSVM(model=model, C=self.c_value, max_iter=50)
else:
raise TypeError('Invalid classifier type')
def load_data(self):
letters = load_letters()
X, y, folds = letters['data'], letters['labels'], letters['folds']
X, y = np.array(X), np.array(y)
return X, y, folds
# X is a numpy array of samples where each sample
# has the shape (n_letters, n_features)
def train(self, X_train, y_train):
self.clf.fit(X_train, y_train)
def evaluate(self, X_test, y_test):
return self.clf.score(X_test, y_test)
# Run the classifier on input data
def classify(self, input_data):
return self.clf.predict(input_data)[0]
示例3: train_SSVM
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def train_SSVM(X_train, y_train):
#print X_train.shape, X_train[0].shape
# splitting the 8 sub-arrays into further:
#X_train = np.concatenate([np.array_split(x, 100) for x in X_train])
#y_train = np.concatenate([np.array_split(y, 100) for y in y_train])
#X_test = np.concatenate([np.array_split(x, 30) for x in X_test])
#y_test = np.concatenate([np.array_split(y, 30) for y in y_test])
#print X_train.shape
#print X_train[0].shape
#print y_train[0].shape
#exit()
#Train using linear chain CRF
#https://groups.google.com/forum/#!topic/pystruct/KIkF7fzCyDI
model = ChainCRF()
#ssvm = NSlackSSVM(model=model, C=.1, max_iter=11) # almost similar to FrankWolfeSSVM
ssvm = FrankWolfeSSVM(model=model, C=0.001, max_iter=11)
# c=0.2 -> 62.86 % accuracy <==> c=0.1
#ssvm = OneSlackSSVM(model=model) #doesn't work as well
ssvm.fit(X_train, y_train)
print "Learning complete..."
return ssvm
示例4: CRFTrainer
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
class CRFTrainer(object):
def __init__(self, c_value, classifier_name='ChainCRF'):
self.c_value = c_value
self.classifier_name = classifier_name
if self.classifier_name == 'ChainCRF':
model = ChainCRF()
self.clf = FrankWolfeSSVM(model=model, C=self.c_value, max_iter=50)
else:
raise TypeError('Invalid classifier type')
def load_data(self):
letters = load_letters()
X, y, folds = letters['data'], letters['labels'], letters['folds']
X, y = np.array(X), np.array(y)
return X, y, folds
# X是一个由样本组成的numpy数组,每个样本为(字母,数值)
def train(self, X_train, y_train):
self.clf.fit(X_train, y_train)
def evaluate(self, X_test, y_test):
return self.clf.score(X_test, y_test)
# 对输入数据运行分类器
def classify(self, input_data):
return self.clf.predict(input_data)[0]
示例5: test_multinomial_blocks_frankwolfe_batch
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def test_multinomial_blocks_frankwolfe_batch():
X, Y = generate_blocks_multinomial(n_samples=10, noise=0.3, seed=0)
crf = GridCRF(inference_method='qpbo')
clf = FrankWolfeSSVM(model=crf, C=1, max_iter=500, batch_mode=True)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
示例6: test_multinomial_blocks_frankwolfe
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def test_multinomial_blocks_frankwolfe():
X, Y = generate_blocks_multinomial(n_samples=50, noise=0.5,
seed=0)
crf = GridCRF(inference_method='qpbo')
clf = FrankWolfeSSVM(model=crf, C=1, line_search=True,
batch_mode=False, check_dual_every=500)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(Y, Y_pred)
示例7: main
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def main():
parser = argparse.ArgumentParser(
description="learn to segment and tokenize (really, any labeling)",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--untokfile", "-u", nargs="?", type=argparse.FileType("r"), default=sys.stdin, help="untok file"
)
parser.add_argument(
"--biofile",
"-b",
nargs="?",
type=argparse.FileType("r"),
default=sys.stdin,
help="bio file. must match untok file and be space separated",
)
parser.add_argument("--outfile", "-o", nargs="?", type=argparse.FileType("wb"), default=None, help="output file")
parser.add_argument("--debug", "-d", action="store_true", default=False, help="debug mode")
try:
args = parser.parse_args()
except IOError as msg:
parser.error(str(msg))
untokfile = prepfile(args.untokfile, "r")
biofile = prepfile(args.biofile, "r")
data, labels, datamap, labelmap = prepdata(untokfile, biofile, args.debug)
# print(data)
# print(labels)
model = ChainCRF()
# ssvm = SubgradientSSVM(model=model, C=.1)#, show_loss_every=5)
ssvm = FrankWolfeSSVM(model=model, max_iter=100, C=0.1) # , show_loss_every=5)
ssvm.fit(data, labels)
# curve = ssvm.loss_curve_
# TONT
# print("TONT score with chain CRF: %f" % ssvm.score(data, labels))
ret = {}
ret["model"] = ssvm
ret["feats"] = datamap
ret["labels"] = labelmap
if args.outfile is not None:
pickle.dump(ret, args.outfile)
示例8: test_svm_as_crf_pickling_batch
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def test_svm_as_crf_pickling_batch():
iris = load_iris()
X, y = iris.data, iris.target
X_ = [(np.atleast_2d(x), np.empty((0, 2), dtype=np.int)) for x in X]
Y = y.reshape(-1, 1)
X_train, X_test, y_train, y_test = train_test_split(X_, Y, random_state=1)
_, file_name = mkstemp()
pbl = GraphCRF(n_features=4, n_states=3, inference_method='unary')
logger = SaveLogger(file_name)
svm = FrankWolfeSSVM(pbl, C=10, logger=logger, max_iter=50, batch_mode=False)
svm.fit(X_train, y_train)
assert_less(.97, svm.score(X_test, y_test))
assert_less(.97, logger.load().score(X_test, y_test))
示例9: n_cross_valid_crf_candidate
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def n_cross_valid_crf_candidate(list_line, X, Y, K):
list_text = []
for i in range(0, len(list_line), 3):
split_first = 0
split_second = 0
if i % 3 == 0:
split_first = list_line[i].strip().split('\t')
list_text.append(split_first)
list_text = np.array(list_text)
cv = KFold(len(X), K, shuffle=True, random_state=0)
list_write = []
for traincv, testcv in cv:
x_train, x_test = X[traincv], X[testcv]
y_train, y_test = Y[traincv], Y[testcv]
list_text_train, list_text_test = list_text[traincv], list_text[testcv]
crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=10)
ssvm.fit(x_train, y_train)
y_pred = ssvm.predict(x_test)
list_wrong = metrics_crf_candidate(list_text_test, y_test, y_pred)
if len(list_write) == 0:
list_write = list_wrong
else:
for i in range(0, len(list_wrong)):
svc = list_wrong[0]
road = list_wrong[1]
busstop = list_wrong[2]
list_write[0] = list_write[0] + svc
list_write[1] = list_write[1] + road
list_write[2] = list_write[2] + busstop
# write_file('d:/', 'wrong_svc', list_write[0])
# write_file('d:/', 'wrong_road', list_write[1])
# write_file('d:/', 'wrong_busstop', list_write[2])
write_file('d:/', 'good_svc', list_write[0])
write_file('d:/', 'good_road', list_write[1])
write_file('d:/', 'good_busstop', list_write[2])
示例10: results_CRFs
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def results_CRFs(X_training, Y_training, X_testing, Y_testing, command):
crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=100)
ssvm.fit(X_training, Y_training)
y_pred = ssvm.predict(X_testing)
list_write = list()
print 'Accuracy of linear-crf %f:' % ssvm.score(X_testing, Y_testing)
if command == 'metrics_F1':
metrics_crf(Y_testing, y_pred)
elif command == 'confusion_matrix':
confusion_matrix_CRF(Y_testing, y_pred)
elif command == 'write_results':
list_write = write_CRFs_compare(Y_testing, y_pred)
for value in list_write:
pred_list = value[0]
test_list = value[1]
for i in range(0, len(pred_list)):
print str(pred_list[i]) + '\t' + str(test_list[i])
示例11: chaincrf_test
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def chaincrf_test():
num_pics = 3000
X, Y= load_pictures(num_pics)
X = np.array(X)
Y = np.array(Y)
print X.shape
print Y.shape
# 0: pixel, 1: row, 2: picture
mode = 0
outstr = "Test score with data arranged by "
if mode == 0:
X, Y = arrange_by_pixel(X, Y)
outstr += "pixel:"
elif mode == 1:
X, Y = arrange_by_row(X, Y)
outstr += "row:"
elif mode == 2:
X, Y = arrange_by_picture(X, Y)
outstr += "picture:"
print X.shape
print Y.shape
#print X.shape, Y.shape
train_pct = 0.66
test_pct = 1 - train_pct
X_train = X[0:math.floor(train_pct * num_pics)]
X_test = X[math.floor(test_pct*num_pics):]
Y_train = Y[0:math.floor(train_pct * num_pics)]
Y_test = Y[math.floor(test_pct*num_pics):]
model = ChainCRF()
ssvm = FrankWolfeSSVM(model=model, C=.1, max_iter=10)
# #print X_train.shape, Y_train.shape
ssvm.fit(X_train, Y_train)
results = ssvm.score(X_test, Y_test)
print outstr
print results
示例12: build_models
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def build_models(X_train, y_train):
'''
PURPOSE: ouput model objects which have been fitted with training data
INPUT: X_train (np.array) - features matrix
y_train (np.array) - label matrix
OUTPUT: nmb (MultinomialNB obj) - model trained on X_train, y_train
svm (LinearSVC obj) - model trained on X_train, y_train
ssvm (PyStruct chainCRF object) - trained Chain CRF model
'''
# Multinomial Naive Bayes Classifier:
nmb = MultinomialNB()
nmb.fit(np.vstack(X_train), np.hstack(y_train))
# Support Vector Machine Classifier
svm = LinearSVC(dual=False, C=.1)
svm.fit(np.vstack(X_train), np.hstack(y_train))
# Chain Conditional Random Field Classifier
model = ChainCRF()
ssvm = FrankWolfeSSVM(model=model, C=0.5, max_iter=15)
ssvm.fit(X_train, y_train)
return nmb, svm, ssvm
示例13: CRF_pred_label
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def CRF_pred_label(X, Y, command):
texts = load_demo_text(command)
if command == 'twitter':
convert_texts = filterText_demo(texts, 'removeLink', command)
X_ftr = load_demo_ftr(command)
print len(convert_texts), len(X_ftr)
path_write = 'D:/Project/Transportation_SMU-NEC_collaboration/Data_demo_Dec_2015/twitter'
name_write = 'pred_label_' + command
elif command == 'sgforums':
convert_texts = filterText_demo(texts, 'removePunc', command)
X_ftr = load_demo_ftr(command)
print len(convert_texts), len(X_ftr)
path_write = 'D:/Project/Transportation_SMU-NEC_collaboration/Data_demo_Dec_2015/sgforums'
name_write = 'pred_label_' + command
elif command == 'facebook':
convert_texts = filterText_demo(texts, 'removeLink', command)
X_ftr = load_demo_ftr(command)
print len(convert_texts), len(X_ftr)
path_write = 'D:/Project/Transportation_SMU-NEC_collaboration/Data_demo_Dec_2015/facebook'
name_write = 'pred_label_' + command
crf = ChainCRF(inference_method='max-product', directed=False, class_weight=None)
ssvm = FrankWolfeSSVM(model=crf, C=1.0, max_iter=100)
ssvm.fit(X, Y)
y_pred = ssvm.predict(X_ftr)
list_write = list()
for line in y_pred:
labels = ''
for label in line:
labels += str(label) + '\t'
list_write.append(labels.strip())
write_file(path_write, name_write, list_write)
示例14: SubgradientSSVM
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
max_iter=100, tol=0.001, inference_cache=50)
subgradient_svm = SubgradientSSVM(crf, learning_rate=0.001, max_iter=20,
decay_exponent=0, momentum=0)
bcfw_svm = FrankWolfeSSVM(crf, max_iter=50, check_dual_every=4)
#n-slack cutting plane ssvm
n_slack_svm.fit(X, Y)
# 1-slack cutting plane ssvm
one_slack_svm.fit(X, Y)
# online subgradient ssvm
subgradient_svm.fit(X, Y)
# Block coordinate Frank-Wolfe
bcfw_svm.fit(X, Y)
# don't plot objective from chached inference for 1-slack
inference_run = ~np.array(one_slack_svm.cached_constraint_)
time_one = np.array(one_slack_svm.timestamps_[1:])[inference_run]
# plot stuff
plt.plot(n_slack_svm.timestamps_[1:], n_slack_svm.objective_curve_,
label="n-slack cutting plane")
plt.plot(n_slack_svm.timestamps_[1:], n_slack_svm.primal_objective_curve_,
label="n-slack primal")
plt.plot(time_one,
np.array(one_slack_svm.objective_curve_)[inference_run],
label="one-slack cutting_plane")
plt.plot(time_one,
np.array(one_slack_svm.primal_objective_curve_)[inference_run],
示例15: trainModel_Basic
# 需要导入模块: from pystruct.learners import FrankWolfeSSVM [as 别名]
# 或者: from pystruct.learners.FrankWolfeSSVM import fit [as 别名]
def trainModel_Basic(num_iter=5,inference="qpbo",trainer="NSlack",num_train=2,num_test=1,C=0.1,edges="180x180_dist1_diag0",inputs=[1,1,1,1,1,1],features="all",directed=False,savePred=False):
padding=(30,30,30,30)
if directed==True:
features +='+directed'
resultsDir = os.getcwd()+'/CRFResults'
nameLen = len(os.listdir(resultsDir))
edgeFeature = edges
filename=str(nameLen)+'_CRF_iter_'+str(num_iter)+"_"+inference+"_"+trainer+"_"+features+"_"+str(num_train)+"_"+str(num_test)+"_"+edgeFeature
print "Loading training slices"
start = time.clock()
train =extractSlices2(train_path,num_train,padding,inputs=inputs)
end= time.clock()
train_load_time = (end-start)/60.0
[trainLayers,trainTruth,sliceShape] = train
print "Training slices loaded in %f" % (train_load_time)
n_features= len(trainLayers[0][0,0])
print "Layer shape is : "
print trainLayers[0].shape
print "Training the model"
edges= np.load("/home/bmi/CRF/edges/"+edges+".npy")
G = [edges for x in trainLayers]
print trainLayers[0].shape
trainLayers = np.array( [x.reshape((sliceShape[0]*sliceShape[1],n_features)) for x in trainLayers] )
trainTruth = np.array( [x.reshape((sliceShape[0]*sliceShape[1],)).astype(int) for x in trainTruth] )
if inference=='ogm':
crf = GraphCRF(inference_method=('ogm',{'alg':'fm'}),directed=directed)
else:
crf = GraphCRF(inference_method=inference,directed=directed)
if trainer=="Frank":
svm = FrankWolfeSSVM(model = crf,max_iter=num_iter,C=C,n_jobs=6,verbose=1)
elif trainer=="NSlack":
svm = NSlackSSVM(model = crf,max_iter=num_iter,C=C,n_jobs=-1,verbose=1)
else:
svm = OneSlackSSVM(model = crf,max_iter=num_iter,C=C,n_jobs=-1,verbose=1)
start = time.clock()
asdf = zip(trainLayers,G)
svm.fit(asdf,trainTruth)
end = time.clock()
train_time = (end-start)/60.0
print "The training took %f" % (train_time)
print "Model parameter size :"
print svm.w.shape
print "making predictions on train data"
predTrain = svm.predict(asdf)
trainDice=[]
for i in range(len(trainLayers)):
diceScore = accuracy(predTrain[i],trainTruth[i])
trainDice.append(diceScore)
meanTrainDice = sum(trainDice)/len(trainLayers)
del trainLayers,trainTruth
################################################################################################
overallDicePerPatient=[] # For overall test Dice
extDicePerPatient=[]
PatientTruthLayers=[]
PatientPredLayers=[]
PREC=[]
RECALL=[]
F1=[]
LayerwiseDiceTotal=[]
testResultFile = open(os.getcwd()+"/CRFResults/"+filename+".csv",'a')
testResultFile.write("folderName,numLayers, Overall Dice, precision , recall, F1"+"\n")
counter=0
print "Loading the test slices"
for folder in os.listdir(test_path):
path = test_path + "/" + folder
layerDiceScores=''
# print path
data = extractTestSlices2(path,padding,inputs=inputs)
if data!=0:
[testLayers,testTruth,sliceShape,startSlice,endSlice] = data
#.........这里部分代码省略.........