当前位置: 首页>>代码示例>>Python>>正文


Python BackpropTrainer.trainEpochs方法代码示例

本文整理汇总了Python中pybrain.supervised.trainers.BackpropTrainer.trainEpochs方法的典型用法代码示例。如果您正苦于以下问题:Python BackpropTrainer.trainEpochs方法的具体用法?Python BackpropTrainer.trainEpochs怎么用?Python BackpropTrainer.trainEpochs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.supervised.trainers.BackpropTrainer的用法示例。


在下文中一共展示了BackpropTrainer.trainEpochs方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
	def train(self):
		print "Enter the number of times to train, -1 means train until convergence:"
		t = int(raw_input())
		print "Training the Neural Net"
		print "self.net.indim = "+str(self.net.indim)
		print "self.train_data.indim = "+str(self.train_data.indim)

		trainer = BackpropTrainer(self.net, dataset=self.train_data, momentum=0.1, verbose=True, weightdecay=0.01)
		
		if t == -1:
			trainer.trainUntilConvergence()
		else:
			for i in range(t):
				trainer.trainEpochs(1)
				trnresult = percentError( trainer.testOnClassData(), self.train_data['class'])
				# print self.test_data

				tstresult = percentError( trainer.testOnClassData(dataset=self.test_data), self.test_data['class'] )

				print "epoch: %4d" % trainer.totalepochs, \
					"  train error: %5.2f%%" % trnresult, \
					"  test error: %5.2f%%" % tstresult

				if i % 10 == 0 and i > 1:
					print "Saving Progress... Writing to a file"
					NetworkWriter.writeToFile(self.net, self.path)

		print "Done training... Writing to a file"
		NetworkWriter.writeToFile(self.net, self.path)
		return trainer
开发者ID:davidlavy88,项目名称:FaceIdentifier,代码行数:32,代码来源:identify.py

示例2: main

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def main():
  trndata, tstdata = createDS()
  for repeat in xrange(repeats):
    iter_trn_results = []
    iter_tst_results = []
    nn = createNNLong(trndata)
    hiddenAstrocyteLayer, outputAstrocyteLayer = associateAstrocyteLayers(nn)
    trainer = BackpropTrainer(nn, dataset=trndata, learningrate=0.01,
                              momentum=0.1, verbose=False, weightdecay=0.0)
    for grand_iter in xrange(iterations):
      trainer.trainEpochs(1)
      trnresult = percentError(trainer.testOnClassData(), trndata['class'])
      iter_trn_results.append(trnresult)
      tstresult = percentError(trainer.testOnClassData(dataset=tstdata), tstdata['class'])
      iter_tst_results.append(tstresult)
      
      if not grand_iter%20:
        print 'epoch %4d' %trainer.totalepochs, 'train error %5.2f%%' %trnresult, \
            'test error %5.2f%%' %tstresult
            
      inputs  = list(trndata['input'])
      random.shuffle(inputs)
      for inpt in trndata['input']:
        nn.activate(inpt)
        for minor_iter in range(hiddenAstrocyteLayer.astrocyte_processing_iters):
          hiddenAstrocyteLayer.update()
          outputAstrocyteLayer.update()
        hiddenAstrocyteLayer.reset()
        outputAstrocyteLayer.reset()
    all_trn_results.append(iter_trn_results)
    all_tst_results.append(iter_tst_results)
  plotResults(all_trn_results)
  plotResults(all_tst_results)
  plt.show()
开发者ID:mfbx9da4,项目名称:neuron-astrocyte-networks,代码行数:36,代码来源:play_angn.py

示例3: train_network

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def train_network():

    start = timeit.default_timer()

    # Read data
    race_data = pd.read_csv('../data/half_ironman_data_v1.csv')
    race_factors = pd.read_csv('../data/half_ironman_race_factors.csv')

    # Prepare input data
    supervised_dataset = get_supervised_dataset(race_data, race_factors)

    # Create network
    network = create_feedforward_network(supervised_dataset)

    train_data, test_data = supervised_dataset.splitWithProportion(0.9)

    trainer = BackpropTrainer(network, dataset=train_data)

    # Train our network
    trainer.trainEpochs(1)

    # check network accuracy
    print _sum_square_error(network.activateOnDataset(dataset=train_data), train_data['target'])
    print _sum_square_error(network.activateOnDataset(dataset=test_data), test_data['target'])

    print 'Execution time =>', timeit.default_timer() - start, 'secs'
开发者ID:cabhishek,项目名称:datascience,代码行数:28,代码来源:feed_forward_network.py

示例4: test_train

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
	def test_train(self, epochs=1):
		print("Training...")

		split = int(len(self.samples) * 0.7)
		train_samples = self.samples[0:split]
		train_labels  = self.labels[0:split]

		test_samples = self.samples[split:]
		test_labels  = self.labels[split:]

		net = buildNetwork(300, 300, 1)	
		ds = SupervisedDataSet(300, 1)
		for i in range(len(train_samples)):  
			ds.addSample(tuple(np.array(train_samples[i], dtype='float64')), (train_labels[i],))
		
		trainer = BackpropTrainer(net, ds, verbose=True)
		trainer.trainEpochs(epochs)
		self.totalEpochs = epochs
		
		error = 0
		counter = 0
		for i in range(0, 100):
			output = net.activate(tuple(np.array(test_samples[i], dtype='float64')))
			if round(output[0]) != test_labels[i]:
				counter += 1
				print(counter, " : output : ", output[0], " real answer : ", test_labels[i])
				error += 1
			else:
				counter += 1
				print(counter, " : output : ", output[0], " real answer : ", test_labels[i])
		
		print("Trained with " + str(epochs) + " epochs; Total: " + str(self.totalEpochs) + ";")
		return error
开发者ID:skrustev,项目名称:traffic-sign-recognition,代码行数:35,代码来源:neural_network.py

示例5: trainNetwork

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def trainNetwork(net, ds, epochs, learningrate = 0.01, momentum=0.4, weightdecay = 0.0):
    trainer = BackpropTrainer(net,
                              dataset=ds,
                              learningrate=learningrate,
                              momentum=momentum,
                              weightdecay=weightdecay)
    trainer.trainEpochs(epochs)
开发者ID:Melamoto,项目名称:ML-Melody-Co-composition,代码行数:9,代码来源:melody_model.py

示例6: createnetwork

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def createnetwork(n_hoglist,n_classlist,n_classnum,n_hiddensize=100):
    n_inputdim=len(n_hoglist[0])
    n_alldata = ClassificationDataSet(n_inputdim,1, nb_classes=n_classnum)
    for i in range(len(n_hoglist)):
        n_input = n_hoglist[i]
        n_class = n_classlist[i]
        n_alldata.addSample(n_input, [n_class])
    n_tstdata, n_trndata = n_alldata.splitWithProportion( 0.25 )
    n_trndata._convertToOneOfMany( )
    n_tstdata._convertToOneOfMany( )

    print "Number of training patterns: ", len(n_trndata)
    print "Input and output dimensions: ", n_trndata.indim, n_trndata.outdim
    print "First sample (input, target, class):"
    print n_trndata['input'][0], n_trndata['target'][0], n_trndata['class'][0]

    n_fnn = buildNetwork(n_trndata.indim,n_hiddensize, n_trndata.outdim, outclass=SoftmaxLayer)
    n_trainer = BackpropTrainer(n_fnn, dataset=n_trndata, momentum=0.1, verbose=True, weightdecay=0.01)

    n_result = 1
    while n_result > 0.1:
        print n_result
        n_trainer.trainEpochs(1)
        n_trnresult = percentError(n_trainer.testOnClassData(),
                                 n_trndata['class'])
        n_tstresult = percentError(n_trainer.testOnClassData(
            dataset=n_tstdata), n_tstdata['class'])

        print "epoch: %4d" % n_trainer.totalepochs, \
            "  train error: %5.2f%%" % n_trnresult, \
            "  test error: %5.2f%%" % n_tstresult
        n_result = n_tstresult
开发者ID:junwangcas,项目名称:network_rs,代码行数:34,代码来源:create_neuralnet.py

示例7: fit

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
    def fit(self, Xtrain, Ytrain):
        """ Use entirety of provided X, Y to predict

        Arguments
        Xtrain -- Training data
        Ytrain -- Training prediction
        n_hidden -- each entry in the list n_hidden tells how many hidden nodes at that layer
        epocs_to_train -- number of iterations to train the NN for

        Returns
        classifier -- a classifier fitted to Xtrain and Ytrain
        """
        
        self.Xt = Xtrain
        self.Yt = Ytrain
        n_hidden = self.params['n_hidden']
        epochs_to_train = self.params['epochs_to_train']

        # PyBrain expects data in its DataSet format
        trndata = convert_to_pybrain_dataset(Xtrain, Ytrain)

        # build neural net and train it
        net = buildNetwork(trndata.indim, *(n_hidden + [trndata.outdim]), outclass=SoftmaxLayer)
        trainer = BackpropTrainer(net, dataset=trndata, momentum=0.1, verbose=True, weightdecay=0.01)

        with open('nn_progress_report.txt', 'a') as f:
            f.write('training %s for %d epochs\n' % (self.params, epochs_to_train))

        #trainer.trainUntilConvergence()
        trainer.trainEpochs(epochs_to_train)

        # Return a functor that wraps calling predict
        self.trainer = trainer
开发者ID:bravelittlescientist,项目名称:kdd-particle-physics-ml-fall13,代码行数:35,代码来源:neural_network.py

示例8: train

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def train(args):
  inputs, ys, gc = args
  row_length = len(inputs[0])
  d = ds.ClassificationDataSet(
      row_length, nb_classes=2, class_labels=['Poisonous',
                                              'Edible'])
  d.setField('input', inputs)
  d.setField('target', ys)
  test, train = d.splitWithProportion(.25)
  test._convertToOneOfMany()
  train._convertToOneOfMany()

  hidden = row_length // 2
  print "indim:", train.indim
  net = buildNetwork(train.indim,
                     hidden,
                     train.outdim,
                     outclass=SoftmaxLayer)
  trainer = BackpropTrainer(net,
                            dataset=train,
                            momentum=0.0,
                            learningrate=0.1,
                            verbose=True,
                            weightdecay=0.0)
  for i in xrange(20):
      trainer.trainEpochs(1)
      trnresult = percentError(trainer.testOnClassData(),
                                train['class'])
      tstresult = percentError(
              trainer.testOnClassData(dataset=test),
              test['class'])
      print "epoch: %4d" % trainer.totalepochs, \
            "  train error: %5.2f%%" % trnresult, \
            "  test error: %5.2f%%" % tstresult
  return net, gc
开发者ID:DanielleSucher,项目名称:mushrooms,代码行数:37,代码来源:mushrooms.py

示例9: process_symbol

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def process_symbol(net, symbol):
 print "processing ", symbol
 #zuerst train_data prüfen, wenn keine Trainingsdaten da sind, dann brauchen wir nicht weitermachen
 train_data = load(symbol+'.train')
 if (len(train_data) == 0):
  print "--no training data, skip", symbol
  return
 print "-traing data loaded"
 data = load_stockdata(symbol)
 if (len(data) == 0):
  print "--no data, skip", symbol
  return
 print "-stock data loaded"
 settings = load_settings(symbol,data)
 if(len(settings) == 0):
  print "--no settings, skip", symbol
  return
 print "-settings loaded"
 #jetzt sind alle Daten vorhanden
 ds = build_dataset(data, train_data, settings)
 print "-train"
 trainer = BackpropTrainer(net, ds)
 trainer.trainEpochs(epochs)
 print "-saving network"
 NetworkWriter.writeToFile(net, 'network.xml') 
 return net
开发者ID:ZwenAusZwota,项目名称:aktien,代码行数:28,代码来源:learn.py

示例10: ann

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def ann(training_filename , testing_filename,itr,epoch,model_type):
    training_start_time = "The generation of data set and training started at :%s" % datetime.datetime.now()
    training_dataset            = np.genfromtxt(training_filename, skip_header=0,dtype="int", delimiter='\t' )
    data = ClassificationDataSet(len(training_dataset[0])-1, 2, nb_classes=2)
    for aSample in training_dataset:
        data.addSample(aSample[0:len(aSample)-1],[aSample[len(aSample)-1]] );
        
    #  
    data._convertToOneOfMany( )

    fann = buildNetwork(314,2,outclass=SoftmaxLayer);
    trainer = BackpropTrainer( fann, dataset=data, momentum=0.1, verbose=False, weightdecay=0.01)
    counter = 0;
    print training_start_time
    while(counter < itr):
        trainer.trainEpochs( epoch );
        counter = counter + 1;
    
    trnresult = percentError( trainer.testOnClassData(),data['class'] )
    trained_result_log = "epoch: %4d" % trainer.totalepochs, \
          "  train error: %5.2f%%" % trnresult;
    
    
    training_time_end = "The training and result logging ended at %s :" % datetime.datetime.now()
    
    filename = working_dir + "\models\\"+model_type + ".obj"
    save_trained_model(fann, filename)
    
    log_file.write("\n" + training_start_time+"\n")
    log_file.write(str(trained_result_log)+"\n")
    log_file.write(training_time_end+"\n")
开发者ID:maliilyas,项目名称:metabolite_analysis,代码行数:33,代码来源:ann.py

示例11: pybrain_high

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def pybrain_high():
	back=[]
	alldate=New_stock.objects.filter().exclude(name='CIHKY')[0:100]
	wholelen=len(alldate)
	test=New_stock.objects.filter(name__contains="CIHKY")
	testlen=len(test)
	# test dateset
	testdata= SupervisedDataSet(5, 1)
	testwhole=newalldate(test,testlen)
	for i in testwhole:
		testdata.addSample((i[0],i[2],i[3],i[4],i[5]), (0,))	
	# 实验 dateset
	data= SupervisedDataSet(5, 1)
	wholedate=newalldate(alldate,wholelen)
	for i in wholedate:
		data.addSample((i[0],i[2],i[3],i[4],i[5]), (i[1]))	
	#print testwhole
	# 建立bp神经网络
	net = buildNetwork(5, 3, 1,bias=True,hiddenclass=TanhLayer, outclass=SoftmaxLayer)
	
	trainer = BackpropTrainer(net,data)
	trainer.trainEpochs(epochs=100)
	# train and test the network
#	print trainer.train()
	trainer.train()
	print 'ok'
	out=net.activateOnDataset(testdata)
	for j in  test:
                back.append((j.high))
	print back
	print out
	backout=backnormal(back,out)
	print 'okokokoko'
	print backout # 输出22的测试集合
	return out 
开发者ID:lanlanzky,项目名称:stock_project,代码行数:37,代码来源:views.py

示例12: trainNetwork

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def trainNetwork(epochs, rate, trndata, tstdata, network=None):
    '''
    epochs: number of iterations to run on dataset
    trndata: pybrain ClassificationDataSet
    tstdat: pybrain ClassificationDataSet
    network: filename of saved pybrain network, or None
    '''
    if network is None:
        net = buildNetwork(400, 25, 25, 9, bias=True, hiddenclass=SigmoidLayer, outclass=SigmoidLayer)
    else:
        net = NetworkReader.readFrom(network)

    print "Number of training patterns: ", len(trndata)
    print "Input and output dimensions: ", trndata.indim, trndata.outdim
    print "First sample input:"
    print trndata['input'][0]
    print ""
    print "First sample target:", trndata['target'][0]
    print "First sample class:", trndata.getClass(int(trndata['class'][0]))
    print ""

    trainer = BackpropTrainer(net, dataset=trndata, learningrate=rate)
    for i in range(epochs):
        trainer.trainEpochs(1)
        trnresult = percentError(trainer.testOnClassData(), trndata['class'])
        tstresult = percentError(trainer.testOnClassData(dataset=tstdata), tstdata['class'])
        print "epoch: %4d" % trainer.totalepochs, "  train error: %5.2f%%" % trnresult, "  test error: %5.2f%%" % tstresult

    return net
开发者ID:kdelaney711,项目名称:sudokusolver,代码行数:31,代码来源:network.py

示例13: Classifier

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
class Classifier():
    def __init__(self, testing = False):
        self.training_set, self.test_set = split_samples(0.5 if testing else 1.0)
        self.net = buildNetwork( self.training_set.indim, self.training_set.outdim, outclass=SoftmaxLayer )
        self.trainer = BackpropTrainer( self.net, dataset=self.training_set, momentum=0.1, verbose=True, weightdecay=0.01)
        self.train()

    def train(self):
        self.trainer.trainEpochs( EPOCHS )
        trnresult = percentError( self.trainer.testOnClassData(),
                                  self.training_set['class'] )
        print "  train error: %5.2f%%" % trnresult

    def classify(self, file):
        strengths = self.net.activate(process_sample(*load_sample(file)))
        print strengths
        best_match = None
        strength = 0.0
        for i,s in enumerate(strengths):
            if s > strength:
                best_match = i
                strength = s
        return SOUNDS[best_match]

    def test(self):
        tstresult = percentError( self.trainer.testOnClassData(
               dataset=self.test_set ), self.test_set['class'] )

        print "  test error: %5.2f%%" % tstresult
开发者ID:joesarre,项目名称:web-audio-hack-day,代码行数:31,代码来源:classify_beat.py

示例14: trainBackProp

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
 def trainBackProp(self):
     trainer = BackpropTrainer(self.neuralNet, self.dataSet)
     start = time.time()
     trainer.trainEpochs(EPOCHS)
     end = time.time()
     print("Training time -> " + repr(end-start))
     print(repr(trainer.train()))
开发者ID:kepplemr,项目名称:neuralKinect,代码行数:9,代码来源:neuralkinect.py

示例15: trainByImg

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import trainEpochs [as 别名]
def trainByImg(net, test, target, trainNum):
    h, l = test.shape[:2]
    for i in range(h):
        for j in range(l):
            if target[i, j] != 0:
                target[i, j] = 255

    ds = SupervisedDataSet(data_size, 10, data_size)
    # ds = ClassificationDataSet(block_size, nb_classes=2, class_labels=[0,255])
    """
    for i in range(trainNum):
        x = random.uniform(block_width, data_width-block_width-1)
        y = random.uniform(block_length,data_length-block_length-1)
        if target[y,x] == 255:
            targetValue = 1
        else:
            targetValue = 0
        ds.addSample(np.ravel(test[y-block_length:y+block_length+1,x-block_width:x+block_width+1]), [targetValue])

    for i in range(0,data_length,block_width):
        for j in range(0,data_width,block_length):
            ds.addSample(np.ravel(test[i:i+block_length,j:j+block_width]), np.ravel(target[i:i+block_length,j:j+block_width]))

    #ds._convertToOneOfMany()
    """
    # ds.addSample(np.ravel(test), np.ravel(target))
    trainer = BackpropTrainer(net, ds)
    for i in range(1):
        trainer.trainEpochs(1)
开发者ID:yanjiasen4,项目名称:ComputerVision,代码行数:31,代码来源:brain.py


注:本文中的pybrain.supervised.trainers.BackpropTrainer.trainEpochs方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。