当前位置: 首页>>代码示例>>Python>>正文


Python BackpropTrainer.testOnData方法代码示例

本文整理汇总了Python中pybrain.supervised.trainers.BackpropTrainer.testOnData方法的典型用法代码示例。如果您正苦于以下问题:Python BackpropTrainer.testOnData方法的具体用法?Python BackpropTrainer.testOnData怎么用?Python BackpropTrainer.testOnData使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.supervised.trainers.BackpropTrainer的用法示例。


在下文中一共展示了BackpropTrainer.testOnData方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def main():
    images, labels = load_labeled_training(flatten=True)
    images = standardize(images)
    # images, labels = load_pca_proj(K=100)
    shuffle_in_unison(images, labels)
    ds = ClassificationDataSet(images.shape[1], 1, nb_classes=7)
    for i, l in zip(images, labels):
        ds.addSample(i, [l - 1])
    # ds._convertToOneOfMany()
    test, train = ds.splitWithProportion(0.2)
    test._convertToOneOfMany()
    train._convertToOneOfMany()
    net = shortcuts.buildNetwork(train.indim, 1000, train.outdim, outclass=SoftmaxLayer)

    trainer = BackpropTrainer(net, dataset=train, momentum=0.1, learningrate=0.01, weightdecay=0.05)
    # trainer = RPropMinusTrainer(net, dataset=train)
    # cv = validation.CrossValidator(trainer, ds)
    # print cv.validate()
    net.randomize()
    tr_labels_2 = net.activateOnDataset(train).argmax(axis=1)
    trnres = percentError(tr_labels_2, train["class"])
    # trnres = percentError(trainer.testOnClassData(dataset=train), train['class'])
    testres = percentError(trainer.testOnClassData(dataset=test), test["class"])
    print "Training error: %.10f, Test error: %.10f" % (trnres, testres)
    print "Iters: %d" % trainer.totalepochs

    for i in range(100):
        trainer.trainEpochs(10)
        trnres = percentError(trainer.testOnClassData(dataset=train), train["class"])
        testres = percentError(trainer.testOnClassData(dataset=test), test["class"])
        trnmse = trainer.testOnData(dataset=train)
        testmse = trainer.testOnData(dataset=test)
        print "Iteration: %d, Training error: %.5f, Test error: %.5f" % (trainer.totalepochs, trnres, testres)
        print "Training MSE: %.5f, Test MSE: %.5f" % (trnmse, testmse)
开发者ID:deepxkn,项目名称:facial-expression-recognition-1,代码行数:36,代码来源:rbm_nn.py

示例2: anntrain

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def anntrain(xdata,ydata):#,epochs):
    #print len(xdata[0])
    ds=SupervisedDataSet(len(xdata[0]),1)
    #ds=ClassificationDataSet(len(xdata[0]),1, nb_classes=2)
    for i,algo in enumerate (xdata):
        ds.addSample(algo,ydata[i])
    #ds._convertToOneOfMany( ) esto no
    net= FeedForwardNetwork()
    inp=LinearLayer(len(xdata[0]))
    h1=SigmoidLayer(1)
    outp=LinearLayer(1)
    net.addOutputModule(outp) 
    net.addInputModule(inp) 
    net.addModule(h1)
    #net=buildNetwork(len(xdata[0]),1,1,hiddenclass=TanhLayer,outclass=SoftmaxLayer)
    
    net.addConnection(FullConnection(inp, h1))  
    net.addConnection(FullConnection(h1, outp))

    net.sortModules()

    trainer=BackpropTrainer(net,ds)#, verbose=True)#dataset=ds,verbose=True)
    #trainer.trainEpochs(40)
    trainer.trainOnDataset(ds,40) 
    #trainer.trainUntilConvergence(ds, 20, verbose=True, validationProportion=0.15)
    trainer.testOnData()#verbose=True)
    #print 'Final weights:',net.params
    return net
开发者ID:gibranfp,项目名称:authorid,代码行数:30,代码来源:ML.py

示例3: handle

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
    def handle(self, *args, **options):
        better_thans = BetterThan.objects.all() #.filter(pk__lte=50)

        ds = SupervisedDataSet(204960, 1)
        for better_than in better_thans:
            bt = imread(better_than.better_than.image.file)
            wt = imread(better_than.worse_than.image.file)
            better_than.better_than.image.file.close()
            better_than.worse_than.image.file.close()

            bt = filters.sobel(bt)
            wt = filters.sobel(wt)

            bt_input_array = np.reshape(bt, (bt.shape[0] * bt.shape[1]))
            wt_input_array = np.reshape(wt, (wt.shape[0] * wt.shape[1]))
            input_1 = np.append(bt_input_array, wt_input_array)
            input_2 = np.append(wt_input_array, bt_input_array)
            ds.addSample(np.append(bt_input_array, wt_input_array), [-1])
            ds.addSample(np.append(wt_input_array, bt_input_array), [1])
        
        net = buildNetwork(204960, 2, 1)

        train_ds, test_ds = ds.splitWithProportion(options['train_test_split'])
        _, test_ds = ds.splitWithProportion(options['test_split'])

        trainer = BackpropTrainer(net, ds)

        avgerr = trainer.testOnData(dataset=test_ds)
        print 'untrained avgerr: {0}'.format(avgerr)

        trainer.train()

        avgerr = trainer.testOnData(dataset=test_ds)
        print 'trained avgerr: {0}'.format(avgerr)
开发者ID:722C,项目名称:nn-art-critic,代码行数:36,代码来源:nn1.py

示例4: neuralnetworktrain

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
    def neuralnetworktrain(self):
        dataset = self.getdata()

        # Constructing a multiple output neural network.
        # Other neural network architectures will also be experimented,
        # like using different single output neural networks.
        net = FeedForwardNetwork()
        inp = LinearLayer(9)
        h1 = SigmoidLayer(20)
        h2 = TanhLayer(10)
        outp = LinearLayer(3)

        # Adding the modules to the architecture
        net.addOutputModule(outp)
        net.addInputModule(inp)
        net.addModule(h1)
        net.addModule(h2)

        # Creating the connections
        net.addConnection(FullConnection(inp, h1))
        net.addConnection(FullConnection(h1, h2))
        net.addConnection(FullConnection(h2, outp))
        net.sortModules()

        # Training the neural network using Backpropagation
        t = BackpropTrainer(net, learningrate=0.01, momentum=0.5, verbose=True)
        t.trainOnDataset(dataset, 5)
        t.testOnData(verbose=False)

        # Saving the trained neural network information to file
        self.writetrainedinfo(net)
开发者ID:casyazmon,项目名称:mars_city,代码行数:33,代码来源:neuraltraining.py

示例5: main

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def main():
    trainingSet = buildDataSet("days", -1) #build data set. 
    net = buildNetwork(5,3,1,bias=True,hiddenclass=TanhLayer)
    trainer = BackpropTrainer(net,trainingSet,verbose=True)
    testSet = buildDataSet("hours", -6) #build another set for testing/validating
    #In my testing 4000 epochs has been enough to almost reach the lowest error without taking all day.
    #You could use trainUntilConvergence() but that takes all night and does only minimally better
    trainer.trainEpochs(4000)  
    #net.activateOnDataset(testSet)
    trainer.testOnData(testSet, verbose = True) # test on the data set.
开发者ID:TB2706,项目名称:moneymoneymoney,代码行数:12,代码来源:NNtest2.py

示例6: train_callback

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def train_callback():
        trainer = BackpropTrainer(net, learningrate=0.001, lrdecay=1, momentum=0.0, verbose=True)
	print 'MSE before', trainer.testOnData(ds, verbose=True)
	epoch_count = 0
	while epoch_count < 1000:
		epoch_count += 10
		trainer.trainUntilConvergence(dataset=ds, maxEpochs=10)
		networkwriter.NetworkWriter.writeToFile(net,'autosave.network')
	print 'MSE after', trainer.testOnData(ds, verbose=True)
	print ("\n")
	print 'Total epochs:', trainer.totalepochs
开发者ID:Yaremchuk,项目名称:PyImp,代码行数:13,代码来源:learn_gest.py

示例7: estimateNot

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def estimateNot():
    ds_not = SupervisedDataSet(1, 1)
    ds_not.addSample( (0,) , (1,))
    ds_not.addSample( (1,) , (0,))
    net = buildNetwork(1, 100, 1, bias=True)
    trainer = BackpropTrainer(net, learningrate = 0.01, momentum = 0.99)
    trainer.trainOnDataset(ds_not, 3000)
    trainer.testOnData() 
    print '\nthe prediction for NOT value:'
    print 'NOT 0  = ', net.activate((0,))
    print 'NOT 1  = ', net.activate((1,))
开发者ID:andreas-koukorinis,项目名称:Applied-Data-Science,代码行数:13,代码来源:problem1b2.py

示例8: NNet

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
class NNet(object):
    def __init__(self):
        self.net = buildNetwork(2, 4, 2, bias=True)
        self.net.randomize()
        print self.net
        self.ds = SupervisedDataSet(2,2)
        self.trainer = BackpropTrainer(self.net, self.ds, learningrate = 0.1, momentum=0.99)
    def addTrainDS(self, data1, data2, max):
        for x in [1,2]:
            norm1 = self.normalize(data1,max)
            norm2 = self.normalize(data2,max)
        for x in range(len(norm1)):
            self.ds.addSample(norm1[x], norm2[x])
    def train(self):
        print "Training"
        # print self.trainer.train()
        trndata, tstdata = self.ds.splitWithProportion(.25)
        self.trainer.trainUntilConvergence(verbose=True,
                                           trainingData=trndata,
                                           validationData=tstdata,
                                           validationProportion=.3,
                                           maxEpochs=500)
        # self.trainer.trainOnDataset(trndata,500)
        self.trainer.testOnData(tstdata, verbose= True)

    def activate(self, data):
        for x in data:
            self.net.activate(x)

    def normalize(self, data, max):
        normData = np.zeros((len(data), 2))
        for x in [0,1]:
            for y in range(len(data)):
                val = data[y][x]
                normData[y][x] = (val)/(max[x])
        # print normData
        return normData

    def denormalize(self, data, max):
        deNorm = np.zeros((len(data), 2))
        for x in [0,1]:
            for y in range(len(data)):
                val = data[y][x]
                deNorm[y][x] = val*max[x]
        return deNorm

    def getOutput(self, mat, max):
        norm = self.normalize(mat, max)
        out = []
        for val in norm:
            out.append(self.net.activate(val))
        return self.denormalize(out, max)
开发者ID:tiansiyuan,项目名称:neuralnetworkdrone,代码行数:54,代码来源:imageProcessing.py

示例9: buildAndTrain

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def buildAndTrain(ds):
  
  net = buildNetwork(2, 4, 1, bias=True)

  # try:
        #         f = open('_learned', 'r')
  #   net = pickle.load(f)
  #   f.close()
  # except:
  trainer = BackpropTrainer(net, learningrate = 0.01, momentum = 0.99)
  trainer.trainOnDataset(ds, 1000)
  trainer.testOnData()
  return net
开发者ID:pvarsh,项目名称:applied_data_science,代码行数:15,代码来源:and.py

示例10: RunNet

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def RunNet(net, dataset, train_epochs):
	"a function to build a neural net and test on it, for testing purposes right now"
	#print net.activate([2, 1])
	#ds = SupervisedDataSet(15, 1)
	#ds.addSample((1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), (100))
	#ds.addSample((0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0))

	#trainer = BackpropTrainer(net, learningrate = 0.01, momentum = 0.99, verbose = True)
	trainer = BackpropTrainer(net, learningrate = 0.01, momentum = 0.5, verbose = True)
	
	trainer.trainOnDataset(dataset, train_epochs)
	
	trainer.testOnData(verbose = True)
开发者ID:ddemarco5,项目名称:Neural-Network-AI,代码行数:15,代码来源:base.py

示例11: xtrain

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
    def xtrain(self):
        dataset = self.getdata()

        # Constructing a two hidden layes Neural Network
        net = buildNetwork(9, 15, 5, 1, recurrent=True)

        # Training using Back Propagation
        trainer = BackpropTrainer(net, learningrate=0.01, momentum=0.75,
                                  weightdecay=0.02, verbose=True)
        trainer.trainOnDataset(dataset, 10)
        trainer.testOnData(verbose=False)

        # Saving the trained neural network information to file
        self.writetrainedinfo(net)
开发者ID:casyazmon,项目名称:mars_city,代码行数:16,代码来源:xtraining.py

示例12: estimateAnd

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def estimateAnd():
    ds_and = SupervisedDataSet(2, 1)
    ds_and.addSample( (0,0) , (0,))
    ds_and.addSample( (0,1) , (0,))
    ds_and.addSample( (1,0) , (0,))
    ds_and.addSample( (1,1) , (1,))
    net = buildNetwork(2, 4, 1, bias=True)
    trainer = BackpropTrainer(net, learningrate = 0.01, momentum = 0.99)
    trainer.trainOnDataset(ds_and, 3000)
    trainer.testOnData() 
    print '\nthe prediction for AND value:'
    print '1 AND 1 = ', net.activate((1,1))
    print '1 AND 0 = ', net.activate((1,0))
    print '0 AND 1 = ', net.activate((0,1))
    print '0 AND 0 = ', net.activate((0,0))
开发者ID:andreas-koukorinis,项目名称:Applied-Data-Science,代码行数:17,代码来源:problem1a.py

示例13: estimateNor

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def estimateNor():
    ds_nor = SupervisedDataSet(2, 1)
    ds_nor.addSample( (0,0) , (1,))
    ds_nor.addSample( (0,1) , (0,))
    ds_nor.addSample( (1,0) , (0,))
    ds_nor.addSample( (1,1) , (0,))
    net = buildNetwork(2, 100, 1, bias=True)
    trainer = BackpropTrainer(net, learningrate = 0.01, momentum = 0.99)
    trainer.trainOnDataset(ds_nor, 3000)
    trainer.testOnData() 
    print '\nthe prediction for NOR value:'
    print '1 NOR 1 = ', net.activate((1,1))
    print '1 NOR 0 = ', net.activate((1,0))
    print '0 NOR 1 = ', net.activate((0,1))
    print '0 NOR 0 = ', net.activate((0,0))
开发者ID:andreas-koukorinis,项目名称:Applied-Data-Science,代码行数:17,代码来源:problem1b2.py

示例14: computeModel

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
	def computeModel(self, path, user):
		# Create a supervised dataset for training.
		trndata = SupervisedDataSet(24, 1)
		tstdata = SupervisedDataSet(24, 1)
		
		#Fill the dataset.
		for number in range(0,10):
			for variation in range(0,7):
				# Pass all the features as inputs.
				trndata.addSample(self.getSample(user, number, variation),(user.key,))
				
			for variation in range(7,10):
				# Pass all the features as inputs.
				tstdata.addSample(self.getSample(user, number, variation),(user.key,))
				
		# Build the LSTM.
		n = buildNetwork(24, 50, 1, hiddenclass=LSTMLayer, recurrent=True, bias=True)

		# define a training method
		trainer = BackpropTrainer(n, dataset = trndata, momentum=0.99, learningrate=0.00002)

		# carry out the training
		trainer.trainOnDataset(trndata, 2000)
		valueA = trainer.testOnData(tstdata)
		print '\tMSE -> {0:.2f}'.format(valueA)
		self.saveModel(n, '.\NeuralNets\SavedNet_%d' %(user.key))
		
		return n
开发者ID:ThomasRouvinez,项目名称:UserRecognizer,代码行数:30,代码来源:PyBrain.py

示例15: _run_training

# 需要导入模块: from pybrain.supervised.trainers import BackpropTrainer [as 别名]
# 或者: from pybrain.supervised.trainers.BackpropTrainer import testOnData [as 别名]
def _run_training(net, data_set):
    logger.info("Running training...")
    data_set_training, data_set_test = data_set.splitWithProportion(0.9)
    rate = LEARNING_RATE
    trainer = BackpropTrainer(net, data_set_training, learningrate=rate)
    for epoch in xrange(NUM_EPOCHS):
        logger.info("Calculating EPOCH %d", epoch)
        logger.info("Result on training set %f", trainer.train())
        if epoch % 4 == 0:
            logger.info("Result on test set %f", trainer.testOnData(data_set_test, verbose=True))
        if epoch == 0 or epoch % 10 == 9:
            rate /= 10
            trainer = BackpropTrainer(net, data_set_training, learningrate=rate)
开发者ID:ShadowswordPL,项目名称:PowerRecruiter,代码行数:15,代码来源:neural_network.py


注:本文中的pybrain.supervised.trainers.BackpropTrainer.testOnData方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。