当前位置: 首页>>代码示例>>Python>>正文


Python RecurrentNetwork.randomize方法代码示例

本文整理汇总了Python中pybrain.structure.RecurrentNetwork.randomize方法的典型用法代码示例。如果您正苦于以下问题:Python RecurrentNetwork.randomize方法的具体用法?Python RecurrentNetwork.randomize怎么用?Python RecurrentNetwork.randomize使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.structure.RecurrentNetwork的用法示例。


在下文中一共展示了RecurrentNetwork.randomize方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: buildElmanNetwork

# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import randomize [as 别名]
def buildElmanNetwork(hiddenSize):
    net = RecurrentNetwork()
    inLayer = LinearLayer(sampleSize())
    hiddenLayer = SigmoidLayer(hiddenSize)
    outLayer = SigmoidLayer(outputSize())
    net.addInputModule(inLayer)
    net.addModule(hiddenLayer)
    net.addOutputModule(outLayer)
    hiddenRecursive = IdentityConnection(hiddenLayer, hiddenLayer)
    inToHidden = FullConnection(inLayer, hiddenLayer)
    hiddenToOut = FullConnection(hiddenLayer, outLayer)
    net.addRecurrentConnection(hiddenRecursive)
    net.addConnection(inToHidden)
    net.addConnection(hiddenToOut)
    net.sortModules()
    net.randomize()
    return net
开发者ID:Melamoto,项目名称:ML-Melody-Co-composition,代码行数:19,代码来源:melody_model.py

示例2: construct_network

# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import randomize [as 别名]
def construct_network(hidden_nodes, is_elman=True):
    n = RecurrentNetwork()
    n.addInputModule(LinearLayer(4, name="i"))
    n.addModule(BiasUnit("b"))
    n.addModule(ReluLayer(hidden_nodes, name="h"))
    n.addOutputModule(LinearLayer(4, name="o"))

    n.addConnection(FullConnection(n["i"], n["h"]))
    n.addConnection(FullConnection(n["b"], n["h"]))
    n.addConnection(FullConnection(n["b"], n["o"]))
    n.addConnection(FullConnection(n["h"], n["o"]))

    if is_elman:
        # Elman (hidden->hidden)
        n.addRecurrentConnection(FullConnection(n["h"], n["h"]))
    else:
        # Jordan (out->hidden)
        n.addRecurrentConnection(FullConnection(n["o"], n["h"]))

    n.sortModules()
    n.stdParams = 0.03
    n.randomize()

    return n
开发者ID:yukoba,项目名称:rnn_demo,代码行数:26,代码来源:rnn_demo.py

示例3: RecurrentNetwork

# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import randomize [as 别名]
# split 70% for training, 30% for testing
train_set, test_set = DS.splitWithProportion(0.7)

# build our recurrent network with 10 hidden neurodes, one recurrent
# connection, using tanh activation functions
net = RecurrentNetwork()
hidden_neurodes = 10
net.addInputModule(LinearLayer(len(train_set["input"][0]), name="in"))
net.addModule(TanhLayer(hidden_neurodes, name="hidden1"))
net.addOutputModule(LinearLayer(len(train_set["target"][0]), name="out"))
net.addConnection(FullConnection(net["in"], net["hidden1"], name="c1"))
net.addConnection(FullConnection(net["hidden1"], net["out"], name="c2"))
net.addRecurrentConnection(FullConnection(net["out"], net["hidden1"], name="cout"))
net.sortModules()
net.randomize()

# train for 30 epochs (overkill) using the rprop- training algorithm
trainer = RPropMinusTrainer(net, dataset=train_set, verbose=True)
trainer.trainOnDataset(train_set, 30)

# test on training set
predictions_train = np.array([net.activate(train_set["input"][i])[0] for i in xrange(len(train_set))])
plt.plot(train_set["target"], c="k")
plt.plot(predictions_train, c="r")
plt.show()

# and on test set
predictions_test = np.array([net.activate(test_set["input"][i])[0] for i in xrange(len(test_set))])
plt.plot(test_set["target"], c="k")
plt.plot(predictions_test, c="r")
开发者ID:patrikdal,项目名称:BitcoinTradingAlgorithmToolkit,代码行数:32,代码来源:example.py

示例4: epochs

# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import randomize [as 别名]
class LanguageLearner:

	__OUTPUT = "Sample at {0} epochs (prompt=\"{1}\", length={2}): {3}"

	def __init__(self, trainingText, hiddenLayers, hiddenNodes):
		self.__initialized = False
		with open(trainingText) as f:
			self.raw = f.read()
		self.characters = list(self.raw)
		self.rawData = list(map(ord, self.characters))
		print("Creating alphabet mapping...")
		self.mapping = []
		for charCode in self.rawData:
			if charCode not in self.mapping:
				self.mapping.append(charCode)
		print("Mapping of " + str(len(self.mapping)) + " created.")
		print(str(self.mapping))
		print("Converting data to mapping...")
		self.data = []
		for charCode in self.rawData:
			self.data.append(self.mapping.index(charCode))
		print("Done.")
		self.dataIn = self.data[:-1:]
		self.dataOut = self.data[1::]
		self.inputs = 1
		self.hiddenLayers = hiddenLayers
		self.hiddenNodes = hiddenNodes
		self.outputs = 1

	def initialize(self, verbose):
		print("Initializing language learner...")
		self.verbose = verbose

		# Create network and modules
		self.net = RecurrentNetwork()
		inp = LinearLayer(self.inputs, name="in")
		hiddenModules = []
		for i in range(0, self.hiddenLayers):
			hiddenModules.append(LSTMLayer(self.hiddenNodes, name=("hidden-" + str(i + 1))))
		outp = LinearLayer(self.outputs, name="out")

		# Add modules to the network with recurrence
		self.net.addOutputModule(outp)
		self.net.addInputModule(inp)
		
		for module in hiddenModules:
			self.net.addModule(module)

		# Create connections

		self.net.addConnection(FullConnection(self.net["in"], self.net["hidden-1"]))
		for i in range(0, len(hiddenModules) - 1):
			self.net.addConnection(FullConnection(self.net["hidden-" + str(i + 1)], self.net["hidden-" + str(i + 2)]))
			self.net.addRecurrentConnection(FullConnection(self.net["hidden-" + str(i + 1)], self.net["hidden-" + str(i + 1)]))
		self.net.addRecurrentConnection(FullConnection(self.net["hidden-" + str(len(hiddenModules))],
			self.net["hidden-" + str(len(hiddenModules))]))
		self.net.addConnection(FullConnection(self.net["hidden-" + str(len(hiddenModules))], self.net["out"]))
		self.net.sortModules()

		self.trainingSet = SequentialDataSet(self.inputs, self.outputs)
		for x, y in zip(self.dataIn, self.dataOut):
			self.trainingSet.newSequence()
			self.trainingSet.appendLinked([x], [y])

		self.net.randomize()

		print("Neural network initialzed with structure:")
		print(self.net)

		self.trainer = BackpropTrainer(self.net, self.trainingSet, verbose=verbose)
		self.__initialized = True
		print("Successfully initialized network.")

	def train(self, epochs, frequency, prompt, length):
		if not self.__initialized:
			raise Exception("Attempted to train uninitialized LanguageLearner")
		print ("Beginning training for " + str(epochs) + " epochs...")
		if frequency >= 0:
			print(LanguageLearner.__OUTPUT.format(0, prompt, length, self.sample(prompt, length)))
		for i in range(1, epochs):
			print("Error at " + str(i) + " epochs: " + str(self.trainer.train()))
			if i % frequency == 0:
				print(LanguageLearner.__OUTPUT.format(i, prompt, length, self.sample(prompt, length)))
		print("Completed training.")

	def sample(self, prompt, length):
		self.net.reset()
		if prompt == None:
			prompt = chr(random.choice(self.mapping))
		output = prompt
		charCode = ord(prompt)
		for i in range(0, length):
			sampledResult = self.net.activate([charCode])
			charCode = int(round(sampledResult[0]))
			if charCode < 0 or charCode >= len(self.mapping):
				return output + "#TERMINATED_SAMPLE(reason: learner guessed invalid character)"
			output += chr(self.mapping[charCode])
		return output
开发者ID:sl,项目名称:babble,代码行数:100,代码来源:languagelearner.py


注:本文中的pybrain.structure.RecurrentNetwork.randomize方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。