本文整理汇总了Python中pybrain.structure.RecurrentNetwork._setParameters方法的典型用法代码示例。如果您正苦于以下问题:Python RecurrentNetwork._setParameters方法的具体用法?Python RecurrentNetwork._setParameters怎么用?Python RecurrentNetwork._setParameters使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.structure.RecurrentNetwork
的用法示例。
在下文中一共展示了RecurrentNetwork._setParameters方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import _setParameters [as 别名]
def main():
inData=createDataset()
env = MarketEnvironment(inData)
task = MaximizeReturnTask(env)
numIn=min(env.worldState.shape)
net=RecurrentNetwork()
net.addInputModule(BiasUnit(name='bias'))
#net.addOutputModule(TanhLayer(1, name='out'))
net.addOutputModule((SignLayer(1,name='out')))
net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
net.addInputModule(LinearLayer(numIn,name='in'))
net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
net.sortModules()
# remove bias (set weight to 0)
#initialParams=append(array([0.0]),net._params[1:])
#net._setParameters(initialParams)
#net._setParameters([ 0.0,-0.05861005,1.64281513,0.98302613])
#net._setParameters([0., 1.77132063, 1.3843613, 4.73725269])
#net._setParameters([ 0.0, -0.95173719, 1.92989266, 0.06837472])
net._setParameters([ 0.0, 1.29560957, -1.14727503, -1.80005888, 0.66351325, 1.19240189])
ts=env.ts
learner = RRL(numIn+2,ts) # ENAC() #Q_LinFA(2,1)
agent = LearningAgent(net,learner)
exp = ContinuousExperiment(task,agent)
print(net._params)
exp.doInteractionsAndLearn(len(ts)-1)
print(net._params)
outData=DataFrame(inData['RETURNS']/100)
outData['ts']=[i/100 for i in ts]
outData['cum_log_ts']=cumsum([log(1+i) for i in outData['ts']])
outData['Action_Hist']=env.actionHistory
outData['trading rets']=pE.calculateTradingReturn(outData['Action_Hist'],outData['ts'])
outData['cum_log_rets']=cumsum([log(1+x) for x in outData['trading rets']])
paramHist=learner.paramHistory
plt.figure(0)
for i in range(len(net._params)):
plt.plot(paramHist[i])
plt.draw()
print(pE.percentOfOutperformedMonths(outData['trading rets'],outData['ts']))
#ax1.plot(sign(actionHist),'r')
plt.figure(1)
outData['cum_log_ts'].plot(secondary_y=True)
outData['cum_log_rets'].plot(secondary_y=True)
outData['Action_Hist'].plot()
plt.draw()
plt.show()
示例2: RecurrentNetwork
# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import _setParameters [as 别名]
from pybrain.rl.environments.timeseries.timeseries import MonthlySnPEnvironment
from pybrain.rl.learners.directsearch.rrl import RRL
from pybrain.structure import RecurrentNetwork
from pybrain.structure import LinearLayer, SigmoidLayer, TanhLayer, BiasUnit
from pybrain.structure import FullConnection
from pybrain.rl.agents import LearningAgent
from pybrain.rl.experiments import EpisodicExperiment
from numpy import sign, round
from matplotlib import pyplot
net= RecurrentNetwork()
#Single linear layer with bias unit, and single tanh layer. the linear layer is whats optimised
net.addInputModule(BiasUnit(name='bias'))
net.addOutputModule(TanhLayer(1, name='out'))
net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
net.addInputModule(LinearLayer(1,name='in'))
net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
net.sortModules()
net._setParameters([-8.79227886e-02, -8.29319017e+02, 1.25946474e+00])
print(net._params)
env=MonthlySnPEnvironment()
task=MaximizeReturnTask(env)
learner = RRL() # ENAC() #Q_LinFA(2,1)
agent = LearningAgent(net,learner)
exp=EpisodicExperiment(task,agent)
exp.doEpisodes(10)
示例3: AR
# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import _setParameters [as 别名]
"""
This script aims to create a trading model that trades on a simple AR(1) process
"""
##building the Recurrent Network
net= RecurrentNetwork()
#Single linear layer with bias unit, and single tanh layer. the linear layer is whats optimised
net.addInputModule(BiasUnit(name='bias'))
net.addOutputModule(TanhLayer(1, name='out'))
net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
net.addInputModule(LinearLayer(1,name='in'))
net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
net.sortModules()
net._setParameters([-0.0, 1.8, 1.6])
print(net._params)
#print(net.activate(0.5))
#print(net.activate(0.6))
#net.activate(2)
env=AR1Environment(2000)
task=MaximizeReturnTask(env)#MaximizeReturnTask(env)
learner = RRL() # ENAC() #Q_LinFA(2,1)
agent = LearningAgent(net,learner)
exp = ContinuousExperiment(task,agent)
ts=env.ts.tolist()
exp.doInteractionsAndLearn(1999)
示例4: main
# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import _setParameters [as 别名]
def main():
inData=createDataset()
env = MarketEnvironment(inData)
task = MaximizeReturnTask(env)
numIn=min(env.worldState.shape)
net=RecurrentNetwork()
net.addInputModule(BiasUnit(name='bias'))
net.addOutputModule((SignLayer(1,name='out')))
net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
net.addInputModule(LinearLayer(numIn,name='in'))
net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
net.sortModules()
###net._setParameters([1.89523389, 2.41243781, -0.37355216, 0.60550426, 1.29560957, -1.14727503, -1.80005888, 0.66351325, 1.91905451])
###net._setParameters([ 1.07300605, 2.37801446, -0.28118081, -0.78715898, 0.13367809, 0.31757825,-1.23956247, 1.90411791, 0.95458375])
##net._setParameters([1.35840492,1.87785682, -0.15779415, -0.79786631, 0.13380422, 0.0067797, -1.28202562, 2.38574234, 0.909462])
###net._setParameters([ 0.36062235, 1.70329005, 2.24180157, 0.34832656, 0.31775365, -0.60400026, -0.44850303, 1.50005529, -0.99986366])
net._setParameters([ 1.15741417, 1.70427034, 1.05050831, -0.47303435, -0.87220272, -1.44743793, 0.93697461, 2.77489952, 0.27374758])
ts=env.ts
learner = RRL(numIn+2,ts) # ENAC() #Q_LinFA(2,1)
agent = LearningAgent(net,learner)
exp = ContinuousExperiment(task,agent)
# in sample learning
in_sample_len=500
print("Before in sample {}".format(net._params))
for i in range(100):
exp.doInteractionsAndLearn(in_sample_len)
learner.reset()
agent.reset()
env.reset()
# ouy of sample, online learning
print("Before oos {}".format(net._params))
exp.doInteractionsAndLearn(len(ts)-1)
print("After oos {}".format(net._params))
#performance evaluation
dfIndex=inData['RETURNS'].index
rf=0#inData['Fed Fund Target']
outDataOOS=pE.outData(ts,env.actionHistory,dfIndex,startIndex=in_sample_len)
sharpe_oos=pE.annualisedSharpe(outDataOOS['trading rets'],rf)
drawDown_oos=pE.maximumDrawdown(outDataOOS['trading rets'])
numOutperformedMonths_oos=pE.percentOfOutperformedMonths(outDataOOS['trading rets'],outDataOOS['ts'])
foo=outDataOOS['cum_log_rets'][-1]
bar=math.exp(foo)
traderReturn=math.exp(outDataOOS['cum_log_rets'][-1])-1
benchmarkReturn=math.exp(outDataOOS['cum_log_ts'].values[-1])-1
print( "oos sharpe: {}, \noos drawdown: {} \noos percent outperformed months {}\noos trader return {}".format(sharpe_oos, drawDown_oos, numOutperformedMonths_oos,traderReturn))
paramHist=learner.paramHistory
inData.rename(columns={'RETURNS': 'r(t-1)'},inplace=True)
lbs=insert(inData.columns.values,0,'Bias')
lbs=append(lbs,'F(t-1)')
plt.figure(0)
for i in range(len(net._params)):
if i<7:
plt.plot(paramHist[i],label=lbs[i])
else:
plt.plot(paramHist[i],'--',label=lbs[i])
plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.1),ncol=3)
plt.draw()
fix, axes = plt.subplots(nrows=2,ncols=1)
plotFrame=outDataOOS[['cum_log_ts','cum_log_rets']]
plotFrame.columns=['Buy and Hold','Trading Agent']
plotFrame.plot(ax=axes[0])
outDataOOS['Action_Hist'].plot(ax=axes[1],color='r')
plt.draw()
plt.show()
示例5: RecurrentNetwork
# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import _setParameters [as 别名]
from pybrain.rl.agents import LearningAgent
from pybrain.rl.experiments import ContinuousExperiment
from numpy import sign, round
from matplotlib import pyplot
net= RecurrentNetwork()
#Single linear layer with bias unit, and single tanh layer. the linear layer is whats optimised
net.addInputModule(BiasUnit(name='bias'))
net.addOutputModule(TanhLayer(1, name='out'))
net.addRecurrentConnection(FullConnection(net['out'], net['out'], name='c3'))
net.addInputModule(LinearLayer(1,name='in'))
net.addConnection(FullConnection(net['in'],net['out'],name='c1'))
net.addConnection((FullConnection(net['bias'],net['out'],name='c2')))
net.sortModules()
net._setParameters([0, 10, 1.259])
print(net._params)
env=MonthlySnPEnvironment()
task=MaximizeReturnTask(env)
learner = RRL() # ENAC() #Q_LinFA(2,1)
agent = LearningAgent(net,learner)
exp = ContinuousExperiment(task,agent)
ts=env.ts.tolist()
exp.doInteractionsAndLearn(795)
print(net._params)
actionHist=sign(env.actionHistory)/20
pyplot.plot(ts[0])
pyplot.plot(actionHist)
pyplot.show()