本文整理汇总了Python中pybrain.structure.RecurrentNetwork.__str__方法的典型用法代码示例。如果您正苦于以下问题:Python RecurrentNetwork.__str__方法的具体用法?Python RecurrentNetwork.__str__怎么用?Python RecurrentNetwork.__str__使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.structure.RecurrentNetwork
的用法示例。
在下文中一共展示了RecurrentNetwork.__str__方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: runNeuralLearningCurveSimulation
# 需要导入模块: from pybrain.structure import RecurrentNetwork [as 别名]
# 或者: from pybrain.structure.RecurrentNetwork import __str__ [as 别名]
def runNeuralLearningCurveSimulation(dataTrain, dataTest, train_tfidf, test_tfidf, outFile):
print 'running neural learning curve'
outFile.write('-------------------------------------\n')
outFile.write('train==> %d, %d \n'%(train_tfidf.shape[0],train_tfidf.shape[1]))
outFile.write('test==> %d, %d \n'%(test_tfidf.shape[0],test_tfidf.shape[1]))
trainDS = getDataSetFromTfidf(train_tfidf, dataTrain.target)
testDS = getDataSetFromTfidf(test_tfidf, dataTest.target)
print "Number of training patterns: ", len(trainDS)
print "Input and output dimensions: ", trainDS.indim, trainDS.outdim
print "First sample (input, target, class):"
print len(trainDS['input'][0]), trainDS['target'][0], trainDS['class'][0]
'''
with SimpleTimer('time to train', outFile):
net = buildNetwork(trainDS.indim, trainDS.indim/2, trainDS.indim/4, trainDS.indim/8, trainDS.indim/16, 2, hiddenclass=TanhLayer, outclass=SoftmaxLayer)
trainer = BackpropTrainer( net, dataset=trainDS, momentum=0.1, verbose=True, weightdecay=0.01, batchlearning=True)
'''
net = RecurrentNetwork()
net.addInputModule(LinearLayer(trainDS.indim, name='in'))
net.addModule(SigmoidLayer(trainDS.indim/2, name='hidden'))
net.addModule(SigmoidLayer(trainDS.indim/4, name='hidden2'))
net.addOutputModule(SoftmaxLayer(2, name='out'))
net.addConnection(FullConnection(net['in'], net['hidden'], name='c1'))
net.addConnection(FullConnection(net['hidden'], net['out'], name='c2'))
net.addRecurrentConnection(FullConnection(net['hidden'], net['hidden'], name='c3'))
net.addRecurrentConnection(FullConnection(net['hidden2'], net['hidden'], name='c4'))
net.sortModules()
trainer = BackpropTrainer( net, dataset=trainDS, momentum=0.01, verbose=True, weightdecay=0.01)
outFile.write('%s \n' % (net.__str__()))
epochs = 200
with SimpleTimer('time to train %d epochs' % epochs, outFile):
for i in range(epochs):
trainer.trainEpochs(1)
trnresult = percentError( trainer.testOnClassData(),
trainDS['class'] )
tstresult = percentError( trainer.testOnClassData(
dataset=testDS ), testDS['class'] )
print "epoch: %4d" % trainer.totalepochs, \
" train error: %5.2f%%" % trnresult, \
" test error: %5.2f%%" % tstresult
outFile.write('%5.2f , %5.2f \n' % (100.0-trnresult, 100.0-tstresult))
predicted = trainer.testOnClassData(dataset=testDS)
results = predicted == testDS['class'].flatten()
wrong = []
for i in range(len(results)):
if not results[i]:
wrong.append(i)
print 'classifier got these wrong:'
for i in wrong[:10]:
print dataTest.data[i], dataTest.target[i]
outFile.write('%s %d \n' % (dataTest.data[i], dataTest.target[i]))