本文整理汇总了Python中pybrain.rl.agents.LearningAgent.learn方法的典型用法代码示例。如果您正苦于以下问题:Python LearningAgent.learn方法的具体用法?Python LearningAgent.learn怎么用?Python LearningAgent.learn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.rl.agents.LearningAgent
的用法示例。
在下文中一共展示了LearningAgent.learn方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def train():
# Make the environment
environment = TwentyFortyEightEnvironment()
# The task is the game this time
task = environment
# Make the reinforcement learning agent (use a network because inputs are continuous)
network = ActionValueNetwork(task.nSenses, task.nActions)
# Use Q learning for updating the table (NFQ is for networks)
learner = NFQ()
learner.gamma = GAMMA
agent = LearningAgent(network, learner)
# Set up an experiment
experiment = EpisodicExperiment(task, agent)
# Train the Learner
meanScores = []
for i in xrange(LEARNING_EPOCHS):
experiment.doEpisodes(GAMES_PER_EPOCH)
print "Iteration ", i, " With mean score ", task.meanScore, "Max block achieved ", environment.maxGameBlock
meanScores.append(task.meanScore)
agent.learn()
agent.reset()
params = {"learningEpochs": LEARNING_EPOCHS, "gamesPerEpoch": GAMES_PER_EPOCH, "gamma": GAMMA }
return meanScores, params, agent
示例2: Team
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
class Team(object):
def __init__(self, living, task, learner = ENAC()):
self.living = living
self.task = task
self.last_reward = 0
self.agent = LearningAgent(self.living.brain, learner)
self.oldparams = self.living.brain.params
def Interaction(self):
self.agent.integrateObservation(self.task.getObservation())
self.task.performAction(self.agent.getAction())
self.last_reward = self.task.getReward()
self.agent.giveReward(self.last_reward)
finished = self.task.isFinished()
if finished:
#print task.cumreward
self.agent.newEpisode()
self.task.reset()
return self.last_reward, finished
def Learn(self, episodes = 1):
self.agent.learn(episodes)
self.agent.reset()
newparams = self.living.brain.params.copy() #get_all_weights(eater.brain)[:]
dif = 0
j = 0
for i in newparams:
dif += (self.oldparams[j] - newparams[j])**2
j += 1
self.oldparams = newparams
return dif
示例3: test_maze
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def test_maze():
# simplified version of the reinforcement learning tutorial example
structure = np.array([[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 0, 1, 0, 1],
[1, 0, 1, 0, 1],
[1, 1, 1, 1, 1]])
shape = np.array(structure.shape)
environment = Maze(structure, tuple(shape - 2))
controller = ActionValueTable(shape.prod(), 4)
controller.initialize(1.)
learner = Q()
agent = LearningAgent(controller, learner)
task = MDPMazeTask(environment)
experiment = Experiment(task, agent)
for i in range(30):
experiment.doInteractions(30)
agent.learn()
agent.reset()
controller.params.reshape(shape.prod(), 4).max(1).reshape(*shape)
# (0, 0) is upper left and (0, N) is upper right, so flip matrix upside down to match NESW action order
greedy_policy = np.argmax(controller.params.reshape(shape.prod(), 4),1)
greedy_policy = np.flipud(np.array(list('NESW'))[greedy_policy].reshape(shape))
maze = np.flipud(np.array(list(' #'))[structure])
print('Maze map:')
print('\n'.join(''.join(row) for row in maze))
print('Greedy policy:')
print('\n'.join(''.join(row) for row in greedy_policy))
assert '\n'.join(''.join(row) for row in greedy_policy) == 'NNNNN\nNSNNN\nNSNNN\nNEENN\nNNNNN'
示例4: run_bbox
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def run_bbox(verbose=False):
n_features = n_actions = max_time = -1
if bbox.is_level_loaded():
bbox.reset_level()
else:
bbox.load_level("../levels/train_level.data", verbose=1)
n_features = bbox.get_num_of_features()
n_actions = bbox.get_num_of_actions()
max_time = bbox.get_max_time()
av_table = ActionValueTable(n_features, n_actions)
av_table.initialize(0.2)
print av_table._params
learner = Q(0.5, 0.1)
learner._setExplorer(EpsilonGreedyExplorer(0.4))
agent = LearningAgent(av_table, learner)
environment = GameEnvironment()
task = GameTask(environment)
experiment = Experiment(task, agent)
while environment.finish_flag:
experiment.doInteractions(1)
agent.learn()
bbox.finish(verbose=1)
示例5: q_learning_table
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def q_learning_table():
controller = ActionValueTable(36, 4)
learner = Q()
controller.initialize(1.)
agent = LearningAgent(controller, learner)
score_list = []
turn_list = []
# neural側のトレーニング分 +100
for i in range(600):
print_state(agent.module.getValue, 'table')
score, turn = play(agent, 'table')
score_list.append(score)
turn_list.append(turn)
agent.learn()
agent.reset()
print i, int(numpy.mean(score_list)) , max(score_list), score, turn
with open('./agent.dump', 'w') as f:
pickle.dump(agent, f)
with open('./score.dump', 'w') as f:
pickle.dump([score_list, turn_list], f)
示例6: Pause
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
class QAlgorithm:
def Pause(self):#if menu says pause pause exicution
while self.state == 1:
time.sleep(.05)
return True
def Quit(self):#if menu says quit stop running
self.process.terminate()
return False
def Start(self):#starts the Bot
if self.process == None:
self.runBot()
#self.process = multiprocessing.Process(target=self.runBot, args= [])
#self.process.start()
return True
def CheckState(self):#checks to see what state the menu says to be in
if self.state == 0 :
self.Start()
elif self.state == 1:
self.Pause()
elif self.state == 2:
self.Quit()
def GameOver(self):#checks to see if state requires bot pause, quit or if the game is over
return self.CheckState() or self.sr.checkEndGame(self.endBox,self.gameOver)
def __init__(self,rewardBox,box,gameOver,endGame,scoreArea):
self.reward = rewardBox
self.bbox = box
self.environment = TEnviroment(box)#Custom environment class
if os.path.isfile("bot.txt"):
self.controller = pickle.load(open("bot.txt","rb"))
else:
self.controller = ActionValueNetwork(50**2,4)#Arguments (framerate*maxPlaytime, Number of acitons)
self.learner = Q()
gf = {0:self.GameOver}
self.agent = LearningAgent(self.controller, self.learner)
self.task = TTask(self.environment,scoreArea,gf)#needs custom task
self.experiment = EpisodicExperiment(self.task, self.agent)
self.process = None
self.endBox = endGame
def runBot(self):#runes the bot for a single Episode
self.experiment.doEpisodes()
self.agent.learn()
self.agent.reset()
file = open("bot.txt","wb+")
pickle.dump(self.controller,file)
示例7: learn
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def learn(client):
av_table = ActionValueNetwork(4, 1)
learner = Reinforce()
agent = LearningAgent(av_table, learner)
env = CarEnvironment(client)
task = CarTask(env)
experiment = ContinuousExperiment(task, agent)
while True:
experiment.doInteractionsAndLearn(1)
agent.learn()
示例8: learn
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def learn(self, number_of_iterations):
learner = Q(0.2, 0.8)
task = CartMovingTask(self.environment)
self.controller = ActionValueTable(
reduce(lambda x, y: x * y, map(lambda x: len(x), self.ranges)), self.force_granularity
)
self.controller.initialize(1.0)
agent = LearningAgent(self.controller, learner)
experiment = Experiment(task, agent)
for i in range(number_of_iterations):
experiment.doInteractions(1)
agent.learn()
agent.reset()
with open("test.pcl", "w+") as f:
pickle.dump(self.controller, f)
示例9: maze
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def maze():
# import sys, time
pylab.gray()
pylab.ion()
# The goal appears to be in the upper right
structure = [
"!!!!!!!!!!",
"! ! ! ! !",
"! !! ! ! !",
"! ! !",
"! !!!!!! !",
"! ! ! !",
"! ! !!!! !",
"! !",
"! !!!!! !",
"! ! !",
"!!!!!!!!!!",
]
structure = np.array([[ord(c) - ord(" ") for c in row] for row in structure])
shape = np.array(structure.shape)
environment = Maze(structure, tuple(shape - 2))
controller = ActionValueTable(shape.prod(), 4)
controller.initialize(1.0)
learner = Q()
agent = LearningAgent(controller, learner)
task = MDPMazeTask(environment)
experiment = Experiment(task, agent)
for i in range(100):
experiment.doInteractions(100)
agent.learn()
agent.reset()
# 4 actions, 81 locations/states (9x9 grid)
# max(1) gives/plots the biggest objective function value for that square
pylab.pcolor(controller.params.reshape(81, 4).max(1).reshape(9, 9))
pylab.draw()
# (0, 0) is upper left and (0, N) is upper right, so flip matrix upside down to match NESW action order
greedy_policy = np.argmax(controller.params.reshape(shape.prod(), 4), 1)
greedy_policy = np.flipud(np.array(list("NESW"))[greedy_policy].reshape(shape))
maze = np.flipud(np.array(list(" #"))[structure])
print("Maze map:")
print("\n".join("".join(row) for row in maze))
print("Greedy policy:")
print("\n".join("".join(row) for row in greedy_policy))
示例10: main
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def main():
# 2048の全ての状態を保存するのは無理でしょ.
# 14^16通りの状態があるよね.
#controller = ActionValueTable(16, 4)
#learner = Q()
#controller.initialize(1.)
controller = ActionValueNetwork(16, 4)
learner = NFQ()
#learner._setExplorer(EpsilonGreedyExplorer(0.0))
agent = LearningAgent(controller, learner)
score_list = []
for i in range(10000):
# if os.path.exists('./agent.dump'):
# with open('./agent.dump') as f:
# agent = pickle.load(f)
print i, 'playing ...'
score = play(agent)
score_list.append(score)
# ここで,
# TypeError: only length-1 arrays can be converted to Python scalars
# pybrain/rl/learners/valuebased/q.py
# => learnerをQからNFQにしたら行けた.
# => http://stackoverflow.com/questions/23755927/pybrain-training-a-actionvaluenetwork-doesnt-properly-work
print i, 'learning ...'
agent.learn()
agent.reset()
print i, 'evaluate sample ...'
data =[[0,0,0,0], [0,0,0,0], [0,0,0,2], [0,0,0,2]]
agent.integrateObservation(numpy.array(data).ravel())
move = agent.getAction()
print " ",i, int(numpy.mean(score_list)) , max(score_list), move
if i % 20 == 0:
print i, 'saving ...'
with open('./agent.dump', 'w') as f:
pickle.dump(agent, f)
with open('./score.dump', 'w') as f:
pickle.dump(score_list, f)
示例11: run
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def run():
"""
number of states is:
current value: 0-20
number of actions:
Stand=0, Hit=1 """
# define action value table
av_table = ActionValueTable(MAX_VAL, MIN_VAL)
av_table.initialize(0.)
# define Q-learning agent
q_learner = Q(Q_ALPHA, Q_GAMMA)
q_learner._setExplorer(EpsilonGreedyExplorer(0.0))
agent = LearningAgent(av_table, q_learner)
# define the environment
env = BlackjackEnv()
# define the task
task = BlackjackTask(env, verbosity=VERBOSE)
# finally, define experiment
experiment = Experiment(task, agent)
# ready to go, start the process
for _ in range(NB_ITERATION):
experiment.doInteractions(1)
if task.lastreward != 0:
if VERBOSE:
print "Agent learn"
agent.learn()
print '|First State|Choice 0 (Stand)|Choice 1 (Hit)|Relative value of Standing over Hitting|'
print '|:-------:|:-------|:-----|:-----|'
for i in range(MAX_VAL):
print '| %s | %s | %s | %s |' % (
(i+1),
av_table.getActionValues(i)[0],
av_table.getActionValues(i)[1],
av_table.getActionValues(i)[0] - av_table.getActionValues(i)[1]
)
示例12: __init__
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
class RL:
def __init__(self):
self.av_table = ActionValueTable(4, 5)
self.av_table.initialize(0.1)
learner = SARSA()
learner._setExplorer(EpsilonGreedyExplorer(0.0))
self.agent = LearningAgent(self.av_table, learner)
env = HASSHEnv()
task = HASSHTask(env)
self.experiment = Experiment(task, self.agent)
def go(self):
global rl_params
rassh.core.constants.rl_params = self.av_table.params.reshape(4,5)[0]
self.experiment.doInteractions(1)
self.agent.learn()
示例13: explore_maze
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
def explore_maze():
# simplified version of the reinforcement learning tutorial example
structure = [
list("!!!!!!!!!!"),
list("! ! ! ! !"),
list("! !! ! ! !"),
list("! ! !"),
list("! !!!!!! !"),
list("! ! ! !"),
list("! ! !!!! !"),
list("! !"),
list("! !!!!! !"),
list("! ! !"),
list("!!!!!!!!!!"),
]
structure = np.array([[ord(c) - ord(" ") for c in row] for row in structure])
shape = np.array(structure.shape)
environment = Maze(structure, tuple(shape - 2))
controller = ActionValueTable(shape.prod(), 4)
controller.initialize(1.0)
learner = Q()
agent = LearningAgent(controller, learner)
task = MDPMazeTask(environment)
experiment = Experiment(task, agent)
for i in range(30):
experiment.doInteractions(30)
agent.learn()
agent.reset()
controller.params.reshape(shape.prod(), 4).max(1).reshape(*shape)
# (0, 0) is upper left and (0, N) is upper right, so flip matrix upside down to match NESW action order
greedy_policy = np.argmax(controller.params.reshape(shape.prod(), 4), 1)
greedy_policy = np.flipud(np.array(list("NESW"))[greedy_policy].reshape(shape))
maze = np.flipud(np.array(list(" #"))[structure])
print("Maze map:")
print("\n".join("".join(row) for row in maze))
print("Greedy policy:")
print("\n".join("".join(row) for row in greedy_policy))
assert "\n".join("".join(row) for row in greedy_policy) == "NNNNN\nNSNNN\nNSNNN\nNEENN\nNNNNN"
示例14: PlayYourCardsRight
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
class PlayYourCardsRight(Feature):
def __init__(self, text_to_speech, speech_to_text):
Feature.__init__(self)
# setup AV Table
self.av_table = GameTable(13, 2)
if(self.av_table.loadParameters() == False):
self.av_table.initialize(0.)
# setup a Q-Learning agent
learner = Q(0.5, 0.0)
learner._setExplorer(EpsilonGreedyExplorer(0.0))
self.agent = LearningAgent(self.av_table, learner)
# setup game interaction
self.game_interaction = GameInteraction(text_to_speech, speech_to_text)
# setup environment
environment = GameEnvironment(self.game_interaction)
# setup task
task = GameTask(environment, self.game_interaction)
# setup experiment
self.experiment = Experiment(task, self.agent)
@property
def is_speaking(self):
return self.game_interaction.is_speaking
def _thread(self, args):
# let's play our cards right!
while not self.is_stop:
self.experiment.doInteractions(1)
self.agent.learn()
self.av_table.saveParameters()
示例15: Q
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import learn [as 别名]
mimicTable.initialize(0.)
mimicLearner = Q(ALPHA, GAMMA)
mimicLearner._setExplorer(EpsilonGreedyExplorer(EPSILON))
mimicAgent = LearningAgent(mimicTable, mimicLearner)
mimicEnv = MimicryPreyEnvironment(world)
mimicTask = MimicryPreyTask(mimicEnv)
mimicExp = Experiment(mimicTask, mimicAgent)
try:
for t in xrange(MAX_TIME):
print 't = %d' % t
world.t = t
predExp.doInteractions(1)
predAgent.learn()
mimicExp.doInteractions(1)
mimicAgent.learn()
print 'Mimicker Colors vs. Q-table:'
table_print(mimicTable._params, MimicryPreyInteraction.NSTATES)
print 'Predator Colors vs. Q-table:'
table_print(predTable._params, PredatorInteraction.NSTATES)
print
except KeyboardInterrupt:
pass
finally:
print 'Background: %s' % BKGD_COLOR
print 'Predator Colors vs. Final Q-table:'
table_print(predTable._params, PredatorInteraction.NSTATES)