本文整理汇总了Python中pybrain.rl.agents.LearningAgent.integrateObservation方法的典型用法代码示例。如果您正苦于以下问题:Python LearningAgent.integrateObservation方法的具体用法?Python LearningAgent.integrateObservation怎么用?Python LearningAgent.integrateObservation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pybrain.rl.agents.LearningAgent
的用法示例。
在下文中一共展示了LearningAgent.integrateObservation方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import integrateObservation [as 别名]
def main():
# if os.path.exists('./agent.dump'):
# with open('./agent.dump') as f:
# agent = pickle.load(f)
# else:
controller = ActionValueNetwork(9, 4)
learner = NFQ()
agent = LearningAgent(controller, learner)
score_list = []
for i in range(10000):
score = play(agent)
score_list.append(score)
# ここで,
# TypeError: only length-1 arrays can be converted to Python scalars
# pybrain/rl/learners/valuebased/q.py
# => learnerをQからNFQにしたら行けた.
# => http://stackoverflow.com/questions/23755927/pybrain-training-a-actionvaluenetwork-doesnt-properly-work
#agent.learn()
agent.reset()
#data =[[0,0,0,0], [0,0,0,0], [0,0,0,2], [0,0,0,2]]
data =[[0,0,2], [0,0,0], [0,0,2]]
agent.integrateObservation(numpy.array(data).ravel())
move = agent.getAction()
print i, int(numpy.mean(score_list)) , max(score_list), move
with open('./agent.dump', 'w') as f:
pickle.dump(agent, f)
with open('./score.dump', 'w') as f:
pickle.dump(score_list, f)
示例2: Team
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import integrateObservation [as 别名]
class Team(object):
def __init__(self, living, task, learner = ENAC()):
self.living = living
self.task = task
self.last_reward = 0
self.agent = LearningAgent(self.living.brain, learner)
self.oldparams = self.living.brain.params
def Interaction(self):
self.agent.integrateObservation(self.task.getObservation())
self.task.performAction(self.agent.getAction())
self.last_reward = self.task.getReward()
self.agent.giveReward(self.last_reward)
finished = self.task.isFinished()
if finished:
#print task.cumreward
self.agent.newEpisode()
self.task.reset()
return self.last_reward, finished
def Learn(self, episodes = 1):
self.agent.learn(episodes)
self.agent.reset()
newparams = self.living.brain.params.copy() #get_all_weights(eater.brain)[:]
dif = 0
j = 0
for i in newparams:
dif += (self.oldparams[j] - newparams[j])**2
j += 1
self.oldparams = newparams
return dif
示例3: main
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import integrateObservation [as 别名]
def main():
# 2048の全ての状態を保存するのは無理でしょ.
# 14^16通りの状態があるよね.
#controller = ActionValueTable(16, 4)
#learner = Q()
#controller.initialize(1.)
controller = ActionValueNetwork(16, 4)
learner = NFQ()
#learner._setExplorer(EpsilonGreedyExplorer(0.0))
agent = LearningAgent(controller, learner)
score_list = []
for i in range(10000):
# if os.path.exists('./agent.dump'):
# with open('./agent.dump') as f:
# agent = pickle.load(f)
print i, 'playing ...'
score = play(agent)
score_list.append(score)
# ここで,
# TypeError: only length-1 arrays can be converted to Python scalars
# pybrain/rl/learners/valuebased/q.py
# => learnerをQからNFQにしたら行けた.
# => http://stackoverflow.com/questions/23755927/pybrain-training-a-actionvaluenetwork-doesnt-properly-work
print i, 'learning ...'
agent.learn()
agent.reset()
print i, 'evaluate sample ...'
data =[[0,0,0,0], [0,0,0,0], [0,0,0,2], [0,0,0,2]]
agent.integrateObservation(numpy.array(data).ravel())
move = agent.getAction()
print " ",i, int(numpy.mean(score_list)) , max(score_list), move
if i % 20 == 0:
print i, 'saving ...'
with open('./agent.dump', 'w') as f:
pickle.dump(agent, f)
with open('./score.dump', 'w') as f:
pickle.dump(score_list, f)
示例4: ActionValueNetwork
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import integrateObservation [as 别名]
Program: NFQ_EXAMPLE.PY
Date: Thursday, March 1 2012
Description: Test NFQ on my cartpole simulation.
"""
from pybrain.rl.agents import LearningAgent
from pybrain.rl.learners.valuebased import NFQ, ActionValueNetwork
from cartpole import CartPole
import numpy as np
module = ActionValueNetwork(4,2)
learner = NFQ()
learner.explorer.epsilon = 0.4
agent = LearningAgent(module, learner)
env = CartPole()
cnt = 0
for i in range(1000):
env.reset()
print "Episode: %d, Count: %d" % (i,cnt)
cnt = 0
while not env.failure():
agent.integrateObservation(env.observation())
action = agent.getAction()
pstate, paction, reward, state = env.move(action)
cnt += 1
agent.giveReward(reward)
agent.learn(1)
示例5: ActionValueTable
# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import integrateObservation [as 别名]
# The parameters of your algorithm
av_table = ActionValueTable(4, 2)
av_table.initialize(0.) # For Action Value Table
learner = Q(0.5, 0.0) # define Q-learning agent
learner._setExplorer(EpsilonGreedyExplorer(0.0))
agent = LearningAgent(av_table, learner)
for x in xrange(1,100):
# The training
listxor = random.choice([[0, 0],[0, 1], [1, 0], [1, 1]])
qstate = listxor[0] + listxor[1]*2
resultxor = listxor[0]^listxor[1]
agent.integrateObservation([qstate])
action = agent.getAction()
if int(action) == resultxor:
reward = 1
else:
reward = -1
print "xor(",listxor,") = ", resultxor, " || action = " , action[0], "reward = ", reward
agent.giveReward(reward) # 1 for good answer, 0 for bad.
agent.learn()
print "finished"