当前位置: 首页>>代码示例>>Python>>正文


Python LearningAgent.actaspg方法代码示例

本文整理汇总了Python中pybrain.rl.agents.LearningAgent.actaspg方法的典型用法代码示例。如果您正苦于以下问题:Python LearningAgent.actaspg方法的具体用法?Python LearningAgent.actaspg怎么用?Python LearningAgent.actaspg使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.rl.agents.LearningAgent的用法示例。


在下文中一共展示了LearningAgent.actaspg方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: ParticipantEnvironment

# 需要导入模块: from pybrain.rl.agents import LearningAgent [as 别名]
# 或者: from pybrain.rl.agents.LearningAgent import actaspg [as 别名]
    """ Create an environment for each agent with an asset and a market. """
    env = ParticipantEnvironment(g, mkt, n_offbids=2)

    """ Create a task for the agent to achieve. """
    task = ProfitTask(env)

    """ Build an artificial neural network for the agent. """
    net = buildNetwork(task.outdim, task.indim, bias=False, outputbias=False)
    #    net._setParameters(array([9]))

    """ Create a learning agent with a learning algorithm. """
    agent = LearningAgent(module=net, learner=ENAC())
    """ Initialize parameters (variance). """
    #    agent.setSigma([-1.5])
    """ Set learning options. """
    agent.learner.alpha = 2.0
    # agent.learner.rprop = True
    agent.actaspg = False
    #    agent.disableLearning()

    agents.append(agent)
    tasks.append(task)

""" The Experiment will coordintate the interaction of the given agents and
their associated tasks. """
experiment = MarketExperiment(tasks, agents, mkt)
experiment.setRenderer(ExperimentRenderer())

""" Instruct the experiment to coordinate a set number of interactions. """
experiment.doInteractions(3)
开发者ID:ZiiCee,项目名称:pylon,代码行数:32,代码来源:rl.py


注:本文中的pybrain.rl.agents.LearningAgent.actaspg方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。