当前位置: 首页>>代码示例>>Python>>正文


Python MarkovModel.get_local_independencies方法代码示例

本文整理汇总了Python中pgmpy.models.MarkovModel.get_local_independencies方法的典型用法代码示例。如果您正苦于以下问题:Python MarkovModel.get_local_independencies方法的具体用法?Python MarkovModel.get_local_independencies怎么用?Python MarkovModel.get_local_independencies使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.MarkovModel的用法示例。


在下文中一共展示了MarkovModel.get_local_independencies方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestMarkovModelMethods

# 需要导入模块: from pgmpy.models import MarkovModel [as 别名]
# 或者: from pgmpy.models.MarkovModel import get_local_independencies [as 别名]

#.........这里部分代码省略.........
        phi1 = Factor(['a', 'b'], [1, 2], np.random.rand(2))
        phi2 = Factor(['b', 'c'], [2, 3], np.random.rand(6))
        phi3 = Factor(['c', 'd'], [3, 4], np.random.rand(12))
        phi4 = Factor(['d', 'a'], [4, 1], np.random.rand(4))
        phi5 = Factor(['d', 'b'], [4, 2], np.random.rand(8))
        self.graph.add_factors(phi1, phi2, phi3, phi4, phi5)
        self.assertRaises(ValueError, self.graph.check_model)
        self.graph.remove_factors(phi1, phi2, phi3, phi4, phi5)


    def test_factor_graph(self):
        from pgmpy.models import FactorGraph

        phi1 = Factor(['Alice', 'Bob'], [3, 2], np.random.rand(6))
        phi2 = Factor(['Bob', 'Charles'], [2, 2], np.random.rand(4))
        self.graph.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles')])
        self.graph.add_factors(phi1, phi2)

        factor_graph = self.graph.to_factor_graph()
        self.assertIsInstance(factor_graph, FactorGraph)
        self.assertListEqual(sorted(factor_graph.nodes()),
                             ['Alice', 'Bob', 'Charles', 'phi_Alice_Bob',
                              'phi_Bob_Charles'])
        self.assertListEqual(hf.recursive_sorted(factor_graph.edges()),
                             [['Alice', 'phi_Alice_Bob'], ['Bob', 'phi_Alice_Bob'],
                              ['Bob', 'phi_Bob_Charles'], ['Charles', 'phi_Bob_Charles']])
        self.assertListEqual(factor_graph.get_factors(), [phi1, phi2])

    def test_factor_graph_raises_error(self):
        self.graph.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles')])
        self.assertRaises(ValueError, self.graph.to_factor_graph)

    def test_junction_tree(self):
        self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
                                   ('d', 'a')])
        phi1 = Factor(['a', 'b'], [2, 3], np.random.rand(6))
        phi2 = Factor(['b', 'c'], [3, 4], np.random.rand(12))
        phi3 = Factor(['c', 'd'], [4, 5], np.random.rand(20))
        phi4 = Factor(['d', 'a'], [5, 2], np.random.random(10))
        self.graph.add_factors(phi1, phi2, phi3, phi4)

        junction_tree = self.graph.to_junction_tree()
        self.assertListEqual(hf.recursive_sorted(junction_tree.nodes()),
                             [['a', 'b', 'd'], ['b', 'c', 'd']])
        self.assertEqual(len(junction_tree.edges()), 1)

    def test_junction_tree_single_clique(self):
        from pgmpy.factors import factor_product

        self.graph.add_edges_from([('x1','x2'), ('x2', 'x3'), ('x1', 'x3')])
        phi = [Factor(edge, [2, 2], np.random.rand(4)) for edge in self.graph.edges()]
        self.graph.add_factors(*phi)

        junction_tree = self.graph.to_junction_tree()
        self.assertListEqual(hf.recursive_sorted(junction_tree.nodes()),
                             [['x1', 'x2', 'x3']])
        factors = junction_tree.get_factors()
        self.assertEqual(factors[0], factor_product(*phi))

    def test_markov_blanket(self):
        self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertListEqual(self.graph.markov_blanket('a'), ['b'])
        self.assertListEqual(sorted(self.graph.markov_blanket('b')),
                             ['a', 'c'])

    def test_local_independencies(self):
        from pgmpy.independencies import Independencies

        self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
        independencies = self.graph.get_local_independencies()

        self.assertIsInstance(independencies, Independencies)
        self.assertEqual(len(independencies.get_assertions()), 2)

        string = ''
        for assertion in sorted(independencies.get_assertions(),
                                key=lambda x: list(x.event1)):
            string += str(assertion) + '\n'

        self.assertEqual(string, '(a _|_ c | b)\n(c _|_ a | b)\n')

    def test_bayesian_model(self):
        from pgmpy.models import BayesianModel
        import networkx as nx

        self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
                                   ('d', 'a')])
        phi1 = Factor(['a', 'b'], [2, 3], np.random.rand(6))
        phi2 = Factor(['b', 'c'], [3, 4], np.random.rand(12))
        phi3 = Factor(['c', 'd'], [4, 5], np.random.rand(20))
        phi4 = Factor(['d', 'a'], [5, 2], np.random.random(10))
        self.graph.add_factors(phi1, phi2, phi3, phi4)

        bm = self.graph.to_bayesian_model()
        self.assertIsInstance(bm, BayesianModel)
        self.assertListEqual(sorted(bm.nodes()), ['a', 'b', 'c', 'd'])
        self.assertTrue(nx.is_chordal(bm.to_undirected()))

    def tearDown(self):
        del self.graph
开发者ID:ankurankan,项目名称:pgmpy,代码行数:104,代码来源:test_MarkovModel.py

示例2: MarkovModel

# 需要导入模块: from pgmpy.models import MarkovModel [as 别名]
# 或者: from pgmpy.models.MarkovModel import get_local_independencies [as 别名]
from pgmpy.models import MarkovModel
mm = MarkovModel()
mm.add_nodes_from(['x1', 'x2', 'x3', 'x4', 'x5', 'x6', 'x7'])
mm.add_edges_from([('x1', 'x3'), ('x1', 'x4'), ('x2', 'x4'),
                   ('x2', 'x5'), ('x3', 'x6'), ('x4', 'x6'),
                   ('x4', 'x7'), ('x5', 'x7')])
mm.get_local_independencies()
开发者ID:xenron,项目名称:sandbox-da-python,代码行数:9,代码来源:B04016_02_12.py


注:本文中的pgmpy.models.MarkovModel.get_local_independencies方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。