本文整理汇总了Python中pgmpy.models.MarkovModel类的典型用法代码示例。如果您正苦于以下问题:Python MarkovModel类的具体用法?Python MarkovModel怎么用?Python MarkovModel使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MarkovModel类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TestInferenceBase
class TestInferenceBase(unittest.TestCase):
def setUp(self):
self.bayesian = BayesianModel([('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'e')])
a_cpd = TabularCPD('a', 2, [[0.4, 0.6]])
b_cpd = TabularCPD('b', 2, [[0.2, 0.4], [0.3, 0.4]], evidence='a', evidence_card=[2])
c_cpd = TabularCPD('c', 2, [[0.1, 0.2], [0.3, 0.4]], evidence='b', evidence_card=[2])
d_cpd = TabularCPD('d', 2, [[0.4, 0.3], [0.2, 0.1]], evidence='c', evidence_card=[2])
e_cpd = TabularCPD('e', 2, [[0.3, 0.2], [0.4, 0.1]], evidence='d', evidence_card=[2])
self.bayesian.add_cpd([a_cpd, b_cpd, c_cpd, d_cpd, e_cpd])
self.markov = MarkovModel([('a', 'b'), ('b', 'd'), ('a', 'c'), ('c', 'd')])
factor_1 = Factor(['a', 'b'], [2, 2], np.array([100, 1, 1, 100]))
factor_2 = Factor(['a', 'c'], [2, 2], np.array([40, 30, 100, 20]))
factor_3 = Factor(['b', 'd'], [2, 2], np.array([1, 100, 100, 1]))
factor_4 = Factor(['c', 'd'], [2, 2], np.array([60, 60, 40, 40]))
self.markov.add_factors(factor_1, factor_2, factor_3, factor_4)
def test_bayesian_inference_init(self):
infer_bayesian = Inference(self.bayesian)
self.assertEqual(set(infer_bayesian.variables), {'a', 'b', 'c', 'd', 'e'})
self.assertEqual(infer_bayesian.cardinality, {'a': 2, 'b': 2, 'c': 2, 'd': 2, 'e': 2})
# self.assertEqual(infer_bayesian.factors, {'a': [self.bayesian.get_cpd('a').to_factor(),
# self.bayesian.get_cpd('b').to_factor()],
# 'b': [self.bayesian.get_cpd('b').to_factor(),
# self.bayesian.get_cpd('c').to_factor()],
# 'c': [self.bayesian.get_cpd('c').to_factor(),
# self.bayesian.get_cpd('d').to_factor()],
# 'd': [self.bayesian.get_cpd('d').to_factor(),
# self.bayesian.get_cpd('e').to_factor()],
# 'e': [self.bayesian.get_cpd('e').to_factor()]})
def test_markov_inference_init(self):
infer_markov = Inference(self.markov)
self.assertEqual(set(infer_markov.variables), {'a', 'b', 'c', 'd'})
self.assertEqual(infer_markov.cardinality, {'a': 2, 'b': 2, 'c': 2, 'd': 2})
示例2: test_markovmodel
def test_markovmodel():
"""
>>> from ibeis.algo.hots.pgm_ext import * # NOQA
"""
from pgmpy.models import MarkovModel
from pgmpy.factors import Factor
markovmodel = MarkovModel([('A', 'B'), ('B', 'C'), ('C', 'D'), ('D', 'A')])
factor_a_b = Factor(variables=['A', 'B'], cardinality=[2, 2], values=[100, 5, 5, 100])
factor_b_c = Factor(variables=['B', 'C'], cardinality=[2, 2], values=[100, 3, 2, 4])
factor_c_d = Factor(variables=['C', 'D'], cardinality=[2, 2], values=[3, 5, 1, 6])
factor_d_a = Factor(variables=['D', 'A'], cardinality=[2, 2], values=[6, 2, 56, 2])
markovmodel.add_factors(factor_a_b, factor_b_c, factor_c_d, factor_d_a)
pgm_viz.show_markov_model(markovmodel)
pgm_viz.show_junction_tree(markovmodel)
示例3: setUp
def setUp(self):
self.maxDiff = None
edges = [['family-out', 'dog-out'],
['bowel-problem', 'dog-out'],
['family-out', 'light-on'],
['dog-out', 'hear-bark']]
cpds = {'bowel-problem': np.array([[0.01],
[0.99]]),
'dog-out': np.array([[0.99, 0.01, 0.97, 0.03],
[0.9, 0.1, 0.3, 0.7]]),
'family-out': np.array([[0.15],
[0.85]]),
'hear-bark': np.array([[0.7, 0.3],
[0.01, 0.99]]),
'light-on': np.array([[0.6, 0.4],
[0.05, 0.95]])}
states = {'bowel-problem': ['true', 'false'],
'dog-out': ['true', 'false'],
'family-out': ['true', 'false'],
'hear-bark': ['true', 'false'],
'light-on': ['true', 'false']}
parents = {'bowel-problem': [],
'dog-out': ['bowel-problem', 'family-out'],
'family-out': [],
'hear-bark': ['dog-out'],
'light-on': ['family-out']}
self.bayesmodel = BayesianModel(edges)
tabular_cpds = []
for var, values in cpds.items():
cpd = TabularCPD(var, len(states[var]), values,
evidence=parents[var],
evidence_card=[len(states[evidence_var])
for evidence_var in parents[var]])
tabular_cpds.append(cpd)
self.bayesmodel.add_cpds(*tabular_cpds)
self.bayeswriter = UAIWriter(self.bayesmodel)
edges = {('var_0', 'var_1'), ('var_0', 'var_2'), ('var_1', 'var_2')}
self.markovmodel = MarkovModel(edges)
tables = [(['var_0', 'var_1'],
['4.000', '2.400', '1.000', '0.000']),
(['var_0', 'var_1', 'var_2'],
['2.2500', '3.2500', '3.7500', '0.0000', '0.0000', '10.0000',
'1.8750', '4.0000', '3.3330', '2.0000', '2.0000', '3.4000'])]
domain = {'var_1': '2', 'var_2': '3', 'var_0': '2'}
factors = []
for table in tables:
variables = table[0]
cardinality = [int(domain[var]) for var in variables]
values = list(map(float, table[1]))
factor = DiscreteFactor(variables, cardinality, values)
factors.append(factor)
self.markovmodel.add_factors(*factors)
self.markovwriter = UAIWriter(self.markovmodel)
示例4: __init__
def __init__(self, adj_mat=None, struct=None):
DEBUG = False
self.G = MarkovModel()
self.n_nodes = adj_mat.shape[0]
if DEBUG: print 'struct', struct
if struct == 'complete':
self._complete_graph(adj_mat)
if struct == 'nodes':
self._nodes_only(adj_mat)
if struct is None:
self._import_adj(adj_mat)
self._ising_factors(Wf=5, Wi=5, f_type='mixed')
if DEBUG: print 'generate_init', self.G, self.G.nodes()
示例5: to_markov_model
def to_markov_model(self):
"""
Converts bayesian model to markov model. The markov model created would
be the moral graph of the bayesian model.
Examples
--------
>>> from pgmpy.models import BayesianModel
>>> G = BayesianModel([('diff', 'grade'), ('intel', 'grade'),
... ('intel', 'SAT'), ('grade', 'letter')])
>>> mm = G.to_markov_model()
>>> mm.nodes()
['diff', 'grade', 'intel', 'SAT', 'letter']
>>> mm.edges()
[('diff', 'intel'), ('diff', 'grade'), ('intel', 'grade'),
('intel', 'SAT'), ('grade', 'letter')]
"""
from pgmpy.models import MarkovModel
moral_graph = self.moralize()
mm = MarkovModel(moral_graph.edges())
mm.add_factors(*[cpd.to_factor() for cpd in self.cpds])
return mm
示例6: setUp
def setUp(self):
self.bayesian = BayesianModel([('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'e')])
a_cpd = TabularCPD('a', 2, [[0.4, 0.6]])
b_cpd = TabularCPD('b', 2, [[0.2, 0.4], [0.3, 0.4]], evidence='a', evidence_card=[2])
c_cpd = TabularCPD('c', 2, [[0.1, 0.2], [0.3, 0.4]], evidence='b', evidence_card=[2])
d_cpd = TabularCPD('d', 2, [[0.4, 0.3], [0.2, 0.1]], evidence='c', evidence_card=[2])
e_cpd = TabularCPD('e', 2, [[0.3, 0.2], [0.4, 0.1]], evidence='d', evidence_card=[2])
self.bayesian.add_cpd([a_cpd, b_cpd, c_cpd, d_cpd, e_cpd])
self.markov = MarkovModel([('a', 'b'), ('b', 'd'), ('a', 'c'), ('c', 'd')])
factor_1 = Factor(['a', 'b'], [2, 2], np.array([100, 1, 1, 100]))
factor_2 = Factor(['a', 'c'], [2, 2], np.array([40, 30, 100, 20]))
factor_3 = Factor(['b', 'd'], [2, 2], np.array([1, 100, 100, 1]))
factor_4 = Factor(['c', 'd'], [2, 2], np.array([60, 60, 40, 40]))
self.markov.add_factors(factor_1, factor_2, factor_3, factor_4)
示例7: setUp
def setUp(self):
# A test Bayesian model
diff_cpd = TabularCPD('diff', 2, [[0.6], [0.4]])
intel_cpd = TabularCPD('intel', 2, [[0.7], [0.3]])
grade_cpd = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]],
evidence=['diff', 'intel'], evidence_card=[2, 2])
self.bayesian_model = BayesianModel()
self.bayesian_model.add_nodes_from(['diff', 'intel', 'grade'])
self.bayesian_model.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
self.bayesian_model.add_cpds(diff_cpd, intel_cpd, grade_cpd)
# A test Markov model
self.markov_model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')])
factor_ab = Factor(['A', 'B'], [2, 3], [1, 2, 3, 4, 5, 6])
factor_cb = Factor(['C', 'B'], [4, 3], [3, 1, 4, 5, 7, 8, 1, 3, 10, 4, 5, 6])
factor_bd = Factor(['B', 'D'], [3, 2], [5, 7, 2, 1, 9, 3])
self.markov_model.add_factors(factor_ab, factor_cb, factor_bd)
self.gibbs = GibbsSampling(self.bayesian_model)
示例8: setUp
def setUp(self):
# It is just a moralised version of the above Bayesian network so all the results are same. Only factors
# are under consideration for inference so this should be fine.
self.markov_model = MarkovModel([('A', 'J'), ('R', 'J'), ('J', 'Q'), ('J', 'L'),
('G', 'L'), ('A', 'R'), ('J', 'G')])
factor_a = TabularCPD('A', 2, values=[[0.2], [0.8]]).to_factor()
factor_r = TabularCPD('R', 2, values=[[0.4], [0.6]]).to_factor()
factor_j = TabularCPD('J', 2, values=[[0.9, 0.6, 0.7, 0.1],
[0.1, 0.4, 0.3, 0.9]],
evidence=['A', 'R'], evidence_card=[2, 2]).to_factor()
factor_q = TabularCPD('Q', 2, values=[[0.9, 0.2], [0.1, 0.8]],
evidence=['J'], evidence_card=[2]).to_factor()
factor_l = TabularCPD('L', 2, values=[[0.9, 0.45, 0.8, 0.1],
[0.1, 0.55, 0.2, 0.9]],
evidence=['J', 'G'], evidence_card=[2, 2]).to_factor()
factor_g = TabularCPD('G', 2, [[0.6], [0.4]]).to_factor()
self.markov_model.add_factors(factor_a, factor_r, factor_j, factor_q, factor_l, factor_g)
self.markov_inference = VariableElimination(self.markov_model)
示例9: to_markov_model
def to_markov_model(self):
"""
Converts the factor graph into markov model.
A markov model contains nodes as random variables and edge between
two nodes imply interaction between them.
Examples
--------
>>> from pgmpy.models import FactorGraph
>>> from pgmpy.factors import Factor
>>> G = FactorGraph()
>>> G.add_nodes_from(['a', 'b', 'c'])
>>> phi1 = Factor(['a', 'b'], [2, 2], np.random.rand(4))
>>> phi2 = Factor(['b', 'c'], [2, 2], np.random.rand(4))
>>> G.add_factors(phi1, phi2)
>>> G.add_nodes_from([phi1, phi2])
>>> G.add_edges_from([('a', phi1), ('b', phi1),
... ('b', phi2), ('c', phi2)])
>>> mm = G.to_markov_model()
"""
from pgmpy.models import MarkovModel
mm = MarkovModel()
variable_nodes = self.get_variable_nodes()
if len(set(self.nodes()) - set(variable_nodes)) != len(self.factors):
raise ValueError('Factors not associated with all the factor nodes.')
mm.add_nodes_from(variable_nodes)
for factor in self.factors:
scope = factor.scope()
mm.add_edges_from(itertools.combinations(scope, 2))
mm.add_factors(factor)
return mm
示例10: TestUndirectedGraphTriangulation
class TestUndirectedGraphTriangulation(unittest.TestCase):
def setUp(self):
self.graph = MarkovModel()
def test_check_clique(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'a')])
self.assertTrue(self.graph.check_clique(['a', 'b', 'c']))
def test_is_triangulated(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'a')])
self.assertTrue(self.graph.is_triangulated())
def test_triangulation_h1_inplace(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
phi1 = Factor(['a', 'b'], [2, 3], np.random.rand(6))
phi2 = Factor(['b', 'c'], [3, 4], np.random.rand(12))
phi3 = Factor(['c', 'd'], [4, 5], np.random.rand(20))
phi4 = Factor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
self.graph.triangulate(heuristic='H1', inplace=True)
self.assertTrue(self.graph.is_triangulated())
self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
[['a', 'b'], ['a', 'c'], ['a', 'd'],
['b', 'c'], ['c', 'd']])
def test_triangulation_h2_inplace(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
phi1 = Factor(['a', 'b'], [2, 3], np.random.rand(6))
phi2 = Factor(['b', 'c'], [3, 4], np.random.rand(12))
phi3 = Factor(['c', 'd'], [4, 5], np.random.rand(20))
phi4 = Factor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
self.graph.triangulate(heuristic='H2', inplace=True)
self.assertTrue(self.graph.is_triangulated())
self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
[['a', 'b'], ['a', 'c'], ['a', 'd'],
['b', 'c'], ['c', 'd']])
def test_triangulation_h3_inplace(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
phi1 = Factor(['a', 'b'], [2, 3], np.random.rand(6))
phi2 = Factor(['b', 'c'], [3, 4], np.random.rand(12))
phi3 = Factor(['c', 'd'], [4, 5], np.random.rand(20))
phi4 = Factor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
self.graph.triangulate(heuristic='H3', inplace=True)
self.assertTrue(self.graph.is_triangulated())
self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
[['a', 'b'], ['a', 'd'], ['b', 'c'],
['b', 'd'], ['c', 'd']])
def test_triangulation_h4_inplace(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
phi1 = Factor(['a', 'b'], [2, 3], np.random.rand(6))
phi2 = Factor(['b', 'c'], [3, 4], np.random.rand(12))
phi3 = Factor(['c', 'd'], [4, 5], np.random.rand(20))
phi4 = Factor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
self.graph.triangulate(heuristic='H4', inplace=True)
self.assertTrue(self.graph.is_triangulated())
self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
[['a', 'b'], ['a', 'd'], ['b', 'c'],
['b', 'd'], ['c', 'd']])
def test_triangulation_h5_inplace(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
phi1 = Factor(['a', 'b'], [2, 3], np.random.rand(6))
phi2 = Factor(['b', 'c'], [3, 4], np.random.rand(12))
phi3 = Factor(['c', 'd'], [4, 5], np.random.rand(20))
phi4 = Factor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
self.graph.triangulate(heuristic='H4', inplace=True)
self.assertTrue(self.graph.is_triangulated())
self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
[['a', 'b'], ['a', 'd'], ['b', 'c'],
['b', 'd'], ['c', 'd']])
def test_triangulation_h6_inplace(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
phi1 = Factor(['a', 'b'], [2, 3], np.random.rand(6))
phi2 = Factor(['b', 'c'], [3, 4], np.random.rand(12))
phi3 = Factor(['c', 'd'], [4, 5], np.random.rand(20))
phi4 = Factor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
self.graph.triangulate(heuristic='H4', inplace=True)
self.assertTrue(self.graph.is_triangulated())
self.assertListEqual(hf.recursive_sorted(self.graph.edges()),
[['a', 'b'], ['a', 'd'], ['b', 'c'],
['b', 'd'], ['c', 'd']])
def test_cardinality_mismatch_raises_error(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
factor_list = [Factor(edge, [2, 2], np.random.rand(4)) for edge in
#.........这里部分代码省略.........
示例11: TestUndirectedGraphFactorOperations
class TestUndirectedGraphFactorOperations(unittest.TestCase):
def setUp(self):
self.graph = MarkovModel()
def test_add_factor_raises_error(self):
self.graph.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles'),
('Charles', 'Debbie'), ('Debbie', 'Alice')])
factor = Factor(['Alice', 'Bob', 'John'], [2, 2, 2], np.random.rand(8))
self.assertRaises(ValueError, self.graph.add_factors, factor)
def test_add_single_factor(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi = Factor(['a', 'b'], [2, 2], range(4))
self.graph.add_factors(phi)
six.assertCountEqual(self, self.graph.factors, [phi])
def test_add_multiple_factors(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
six.assertCountEqual(self, self.graph.factors, [phi1, phi2])
def test_get_factors(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
six.assertCountEqual(self, self.graph.get_factors(), [])
self.graph.add_factors(phi1, phi2)
six.assertCountEqual(self, self.graph.get_factors(), [phi1, phi2])
def test_remove_single_factor(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
self.graph.remove_factors(phi1)
six.assertCountEqual(self, self.graph.factors, [phi2])
def test_remove_multiple_factors(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
self.graph.remove_factors(phi1, phi2)
six.assertCountEqual(self, self.graph.factors, [])
def test_partition_function(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
self.assertEqual(self.graph.get_partition_function(), 22.0)
def test_partition_function_raises_error(self):
self.graph.add_nodes_from(['a', 'b', 'c', 'd'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
self.assertRaises(ValueError,
self.graph.get_partition_function)
def tearDown(self):
del self.graph
示例12: test_class_init_with_data_nonstring
def test_class_init_with_data_nonstring(self):
self.g = MarkovModel([(1, 2), (2, 3)])
示例13: test_class_init_with_data_string
def test_class_init_with_data_string(self):
self.g = MarkovModel([('a', 'b'), ('b', 'c')])
self.assertListEqual(sorted(self.g.nodes()), ['a', 'b', 'c'])
self.assertListEqual(hf.recursive_sorted(self.g.edges()),
[['a', 'b'], ['b', 'c']])
示例14: TestInferenceBase
class TestInferenceBase(unittest.TestCase):
def setUp(self):
self.bayesian = BayesianModel([('a', 'b'), ('b', 'c'), ('c', 'd'), ('d', 'e')])
a_cpd = TabularCPD('a', 2, [[0.4, 0.6]])
b_cpd = TabularCPD('b', 2, [[0.2, 0.4], [0.8, 0.6]], evidence=['a'],
evidence_card=[2])
c_cpd = TabularCPD('c', 2, [[0.1, 0.2], [0.9, 0.8]], evidence=['b'],
evidence_card=[2])
d_cpd = TabularCPD('d', 2, [[0.4, 0.3], [0.6, 0.7]], evidence=['c'],
evidence_card=[2])
e_cpd = TabularCPD('e', 2, [[0.3, 0.2], [0.7, 0.8]], evidence=['d'],
evidence_card=[2])
self.bayesian.add_cpds(a_cpd, b_cpd, c_cpd, d_cpd, e_cpd)
self.markov = MarkovModel([('a', 'b'), ('b', 'd'), ('a', 'c'), ('c', 'd')])
factor_1 = DiscreteFactor(['a', 'b'], [2, 2], np.array([100, 1, 1, 100]))
factor_2 = DiscreteFactor(['a', 'c'], [2, 2], np.array([40, 30, 100, 20]))
factor_3 = DiscreteFactor(['b', 'd'], [2, 2], np.array([1, 100, 100, 1]))
factor_4 = DiscreteFactor(['c', 'd'], [2, 2], np.array([60, 60, 40, 40]))
self.markov.add_factors(factor_1, factor_2, factor_3, factor_4)
def test_bayesian_inference_init(self):
infer_bayesian = Inference(self.bayesian)
self.assertEqual(set(infer_bayesian.variables), {'a', 'b', 'c', 'd', 'e'})
self.assertEqual(infer_bayesian.cardinality, {'a': 2, 'b': 2, 'c': 2,
'd': 2, 'e': 2})
self.assertIsInstance(infer_bayesian.factors, defaultdict)
self.assertEqual(set(infer_bayesian.factors['a']),
set([self.bayesian.get_cpds('a').to_factor(),
self.bayesian.get_cpds('b').to_factor()]))
self.assertEqual(set(infer_bayesian.factors['b']),
set([self.bayesian.get_cpds('b').to_factor(),
self.bayesian.get_cpds('c').to_factor()]))
self.assertEqual(set(infer_bayesian.factors['c']),
set([self.bayesian.get_cpds('c').to_factor(),
self.bayesian.get_cpds('d').to_factor()]))
self.assertEqual(set(infer_bayesian.factors['d']),
set([self.bayesian.get_cpds('d').to_factor(),
self.bayesian.get_cpds('e').to_factor()]))
self.assertEqual(set(infer_bayesian.factors['e']),
set([self.bayesian.get_cpds('e').to_factor()]))
def test_markov_inference_init(self):
infer_markov = Inference(self.markov)
self.assertEqual(set(infer_markov.variables), {'a', 'b', 'c', 'd'})
self.assertEqual(infer_markov.cardinality, {'a': 2, 'b': 2, 'c': 2, 'd': 2})
self.assertEqual(infer_markov.factors, {'a': [DiscreteFactor(['a', 'b'], [2, 2],
np.array([100, 1, 1, 100])),
DiscreteFactor(['a', 'c'], [2, 2],
np.array([40, 30, 100, 20]))],
'b': [DiscreteFactor(['a', 'b'], [2, 2],
np.array([100, 1, 1, 100])),
DiscreteFactor(['b', 'd'], [2, 2],
np.array([1, 100, 100, 1]))],
'c': [DiscreteFactor(['a', 'c'], [2, 2],
np.array([40, 30, 100, 20])),
DiscreteFactor(['c', 'd'], [2, 2],
np.array([60, 60, 40, 40]))],
'd': [DiscreteFactor(['b', 'd'], [2, 2],
np.array([1, 100, 100, 1])),
DiscreteFactor(['c', 'd'], [2, 2],
np.array([60, 60, 40, 40]))]})
示例15: TestGibbsSampling
class TestGibbsSampling(unittest.TestCase):
def setUp(self):
# A test Bayesian model
diff_cpd = TabularCPD('diff', 2, [[0.6], [0.4]])
intel_cpd = TabularCPD('intel', 2, [[0.7], [0.3]])
grade_cpd = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]],
evidence=['diff', 'intel'], evidence_card=[2, 2])
self.bayesian_model = BayesianModel()
self.bayesian_model.add_nodes_from(['diff', 'intel', 'grade'])
self.bayesian_model.add_edges_from([('diff', 'grade'), ('intel', 'grade')])
self.bayesian_model.add_cpds(diff_cpd, intel_cpd, grade_cpd)
# A test Markov model
self.markov_model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')])
factor_ab = Factor(['A', 'B'], [2, 3], [1, 2, 3, 4, 5, 6])
factor_cb = Factor(['C', 'B'], [4, 3], [3, 1, 4, 5, 7, 8, 1, 3, 10, 4, 5, 6])
factor_bd = Factor(['B', 'D'], [3, 2], [5, 7, 2, 1, 9, 3])
self.markov_model.add_factors(factor_ab, factor_cb, factor_bd)
self.gibbs = GibbsSampling(self.bayesian_model)
def tearDown(self):
del self.bayesian_model
del self.markov_model
@patch('pgmpy.inference.Sampling.GibbsSampling._get_kernel_from_bayesian_model', autospec=True)
@patch('pgmpy.models.MarkovChain.__init__', autospec=True)
def test_init_bayesian_model(self, init, get_kernel):
model = MagicMock(spec_set=BayesianModel)
gibbs = GibbsSampling(model)
init.assert_called_once_with(gibbs)
get_kernel.assert_called_once_with(gibbs, model)
@patch('pgmpy.inference.Sampling.GibbsSampling._get_kernel_from_markov_model', autospec=True)
def test_init_markov_model(self, get_kernel):
model = MagicMock(spec_set=MarkovModel)
gibbs = GibbsSampling(model)
get_kernel.assert_called_once_with(gibbs, model)
def test_get_kernel_from_bayesian_model(self):
gibbs = GibbsSampling()
gibbs._get_kernel_from_bayesian_model(self.bayesian_model)
self.assertListEqual(list(gibbs.variables), self.bayesian_model.nodes())
self.assertDictEqual(gibbs.cardinalities, {'diff': 2, 'intel': 2, 'grade': 3})
def test_get_kernel_from_markov_model(self):
gibbs = GibbsSampling()
gibbs._get_kernel_from_markov_model(self.markov_model)
self.assertListEqual(list(gibbs.variables), self.markov_model.nodes())
self.assertDictEqual(gibbs.cardinalities, {'A': 2, 'B': 3, 'C': 4, 'D': 2})
def test_sample(self):
start_state = [State('diff', 0), State('intel', 0), State('grade', 0)]
sample = self.gibbs.sample(start_state, 2)
self.assertEquals(len(sample), 2)
self.assertEquals(len(sample.columns), 3)
self.assertIn('diff', sample.columns)
self.assertIn('intel', sample.columns)
self.assertIn('grade', sample.columns)
self.assertTrue(set(sample['diff']).issubset({0, 1}))
self.assertTrue(set(sample['intel']).issubset({0, 1}))
self.assertTrue(set(sample['grade']).issubset({0, 1, 2}))
@patch("pgmpy.inference.Sampling.GibbsSampling.random_state", autospec=True)
def test_sample_less_arg(self, random_state):
self.gibbs.state = None
random_state.return_value = [State('diff', 0), State('intel', 0), State('grade', 0)]
sample = self.gibbs.sample(size=2)
random_state.assert_called_once_with(self.gibbs)
self.assertEqual(len(sample), 2)
def test_generate_sample(self):
start_state = [State('diff', 0), State('intel', 0), State('grade', 0)]
gen = self.gibbs.generate_sample(start_state, 2)
samples = [sample for sample in gen]
self.assertEqual(len(samples), 2)
self.assertEqual({samples[0][0].var, samples[0][1].var, samples[0][2].var}, {'diff', 'intel', 'grade'})
self.assertEqual({samples[1][0].var, samples[1][1].var, samples[1][2].var}, {'diff', 'intel', 'grade'})
@patch("pgmpy.inference.Sampling.GibbsSampling.random_state", autospec=True)
def test_generate_sample_less_arg(self, random_state):
self.gibbs.state = None
gen = self.gibbs.generate_sample(size=2)
samples = [sample for sample in gen]
random_state.assert_called_once_with(self.gibbs)
self.assertEqual(len(samples), 2)