本文整理汇总了Python中pgmpy.models.MarkovModel.copy方法的典型用法代码示例。如果您正苦于以下问题:Python MarkovModel.copy方法的具体用法?Python MarkovModel.copy怎么用?Python MarkovModel.copy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pgmpy.models.MarkovModel
的用法示例。
在下文中一共展示了MarkovModel.copy方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TestUndirectedGraphTriangulation
# 需要导入模块: from pgmpy.models import MarkovModel [as 别名]
# 或者: from pgmpy.models.MarkovModel import copy [as 别名]
#.........这里部分代码省略.........
phi4 = DiscreteFactor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
H = self.graph.triangulate(heuristic='H4', inplace=True)
self.assertListEqual(hf.recursive_sorted(H.edges()),
[['a', 'b'], ['a', 'd'], ['b', 'c'],
['b', 'd'], ['c', 'd']])
def test_triangulation_h5_create_new(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
phi1 = DiscreteFactor(['a', 'b'], [2, 3], np.random.rand(6))
phi2 = DiscreteFactor(['b', 'c'], [3, 4], np.random.rand(12))
phi3 = DiscreteFactor(['c', 'd'], [4, 5], np.random.rand(20))
phi4 = DiscreteFactor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
H = self.graph.triangulate(heuristic='H5', inplace=True)
self.assertListEqual(hf.recursive_sorted(H.edges()),
[['a', 'b'], ['a', 'd'], ['b', 'c'],
['b', 'd'], ['c', 'd']])
def test_triangulation_h6_create_new(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
phi1 = DiscreteFactor(['a', 'b'], [2, 3], np.random.rand(6))
phi2 = DiscreteFactor(['b', 'c'], [3, 4], np.random.rand(12))
phi3 = DiscreteFactor(['c', 'd'], [4, 5], np.random.rand(20))
phi4 = DiscreteFactor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
H = self.graph.triangulate(heuristic='H6', inplace=True)
self.assertListEqual(hf.recursive_sorted(H.edges()),
[['a', 'b'], ['a', 'd'], ['b', 'c'],
['b', 'd'], ['c', 'd']])
def test_copy(self):
# Setup the original graph
self.graph.add_nodes_from(['a', 'b'])
self.graph.add_edges_from([('a', 'b')])
# Generate the copy
copy = self.graph.copy()
# Ensure the copied model is correct
self.assertTrue(copy.check_model())
# Basic sanity checks to ensure the graph was copied correctly
self.assertEqual(len(copy.nodes()), 2)
self.assertListEqual(copy.neighbors('a'), ['b'])
self.assertListEqual(copy.neighbors('b'), ['a'])
# Modify the original graph ...
self.graph.add_nodes_from(['c'])
self.graph.add_edges_from([('c', 'b')])
# ... and ensure none of those changes get propagated
self.assertEqual(len(copy.nodes()), 2)
self.assertListEqual(copy.neighbors('a'), ['b'])
self.assertListEqual(copy.neighbors('b'), ['a'])
with self.assertRaises(nx.NetworkXError):
copy.neighbors('c')
# Ensure the copy has no factors at this point
self.assertEqual(len(copy.get_factors()), 0)
# Add factors to the original graph
phi1 = DiscreteFactor(['a', 'b'], [2, 2], [[0.3, 0.7], [0.9, 0.1]])
self.graph.add_factors(phi1)