当前位置: 首页>>代码示例>>Python>>正文


Python MarkovModel.get_factors方法代码示例

本文整理汇总了Python中pgmpy.models.MarkovModel.get_factors方法的典型用法代码示例。如果您正苦于以下问题:Python MarkovModel.get_factors方法的具体用法?Python MarkovModel.get_factors怎么用?Python MarkovModel.get_factors使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pgmpy.models.MarkovModel的用法示例。


在下文中一共展示了MarkovModel.get_factors方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestUndirectedGraphFactorOperations

# 需要导入模块: from pgmpy.models import MarkovModel [as 别名]
# 或者: from pgmpy.models.MarkovModel import get_factors [as 别名]
class TestUndirectedGraphFactorOperations(unittest.TestCase):
    def setUp(self):
        self.graph = MarkovModel()

    def test_add_factor_raises_error(self):
        self.graph.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles'),
                                   ('Charles', 'Debbie'), ('Debbie', 'Alice')])
        factor = Factor(['Alice', 'Bob', 'John'], [2, 2, 2], np.random.rand(8))
        self.assertRaises(ValueError, self.graph.add_factors, factor)

    def test_add_single_factor(self):
        self.graph.add_nodes_from(['a', 'b', 'c'])
        phi = Factor(['a', 'b'], [2, 2], range(4))
        self.graph.add_factors(phi)
        self.assertListEqual(self.graph.get_factors(), [phi])

    def test_add_multiple_factors(self):
        self.graph.add_nodes_from(['a', 'b', 'c'])
        phi1 = Factor(['a', 'b'], [2, 2], range(4))
        phi2 = Factor(['b', 'c'], [2, 2], range(4))
        self.graph.add_factors(phi1, phi2)
        self.assertListEqual(self.graph.get_factors(), [phi1, phi2])

    def test_remove_single_factor(self):
        self.graph.add_nodes_from(['a', 'b', 'c'])
        phi1 = Factor(['a', 'b'], [2, 2], range(4))
        phi2 = Factor(['b', 'c'], [2, 2], range(4))
        self.graph.add_factors(phi1, phi2)
        self.graph.remove_factors(phi1)
        self.assertListEqual(self.graph.get_factors(), [phi2])

    def test_remove_multiple_factors(self):
        self.graph.add_nodes_from(['a', 'b', 'c'])
        phi1 = Factor(['a', 'b'], [2, 2], range(4))
        phi2 = Factor(['b', 'c'], [2, 2], range(4))
        self.graph.add_factors(phi1, phi2)
        self.graph.remove_factors(phi1, phi2)
        self.assertListEqual(self.graph.get_factors(), [])

    def test_partition_function(self):
        self.graph.add_nodes_from(['a', 'b', 'c'])
        phi1 = Factor(['a', 'b'], [2, 2], range(4))
        phi2 = Factor(['b', 'c'], [2, 2], range(4))
        self.graph.add_factors(phi1, phi2)
        self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
        self.assertEqual(self.graph.get_partition_function(), 22.0)

    def test_partition_function_raises_error(self):
        self.graph.add_nodes_from(['a', 'b', 'c', 'd'])
        phi1 = Factor(['a', 'b'], [2, 2], range(4))
        phi2 = Factor(['b', 'c'], [2, 2], range(4))
        self.graph.add_factors(phi1, phi2)
        self.assertRaises(ValueError,
                          self.graph.get_partition_function)

    def tearDown(self):
        del self.graph
开发者ID:Sayan-Paul,项目名称:kod,代码行数:59,代码来源:test_MarkovModel.py

示例2: MarkovModel

# 需要导入模块: from pgmpy.models import MarkovModel [as 别名]
# 或者: from pgmpy.models.MarkovModel import get_factors [as 别名]
import numpy as np
import pandas as pd
from pgmpy.models import MarkovModel
from pgmpy.estimators import MaximumLikelihoodEstimator
# Generating random data
raw_data = np.random.randint(low=0, high=2, size=(1000, 2))
data = pd.DataFrame(raw_data, columns=['X', 'Y'])
model = MarkovModel()
model.fit(data, estimator=MaximumLikelihoodEstimator)
model.get_factors()
model.nodes()
model.edges()
开发者ID:xenron,项目名称:sandbox-da-python,代码行数:14,代码来源:B04016_06_04.py

示例3: TestUndirectedGraphTriangulation

# 需要导入模块: from pgmpy.models import MarkovModel [as 别名]
# 或者: from pgmpy.models.MarkovModel import get_factors [as 别名]

#.........这里部分代码省略.........
                             [['a', 'b'], ['a', 'd'], ['b', 'c'],
                              ['b', 'd'], ['c', 'd']])

    def test_triangulation_h6_create_new(self):
        self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
                                   ('d', 'a')])
        phi1 = DiscreteFactor(['a', 'b'], [2, 3], np.random.rand(6))
        phi2 = DiscreteFactor(['b', 'c'], [3, 4], np.random.rand(12))
        phi3 = DiscreteFactor(['c', 'd'], [4, 5], np.random.rand(20))
        phi4 = DiscreteFactor(['d', 'a'], [5, 2], np.random.random(10))
        self.graph.add_factors(phi1, phi2, phi3, phi4)
        H = self.graph.triangulate(heuristic='H6', inplace=True)
        self.assertListEqual(hf.recursive_sorted(H.edges()),
                             [['a', 'b'], ['a', 'd'], ['b', 'c'],
                              ['b', 'd'], ['c', 'd']])

    def test_copy(self):
        # Setup the original graph
        self.graph.add_nodes_from(['a', 'b'])
        self.graph.add_edges_from([('a', 'b')])

        # Generate the copy
        copy = self.graph.copy()

        # Ensure the copied model is correct
        self.assertTrue(copy.check_model())

        # Basic sanity checks to ensure the graph was copied correctly
        self.assertEqual(len(copy.nodes()), 2)
        self.assertListEqual(copy.neighbors('a'), ['b'])
        self.assertListEqual(copy.neighbors('b'), ['a'])

        # Modify the original graph ...
        self.graph.add_nodes_from(['c'])
        self.graph.add_edges_from([('c', 'b')])

        # ... and ensure none of those changes get propagated
        self.assertEqual(len(copy.nodes()), 2)
        self.assertListEqual(copy.neighbors('a'), ['b'])
        self.assertListEqual(copy.neighbors('b'), ['a'])
        with self.assertRaises(nx.NetworkXError):
            copy.neighbors('c')

        # Ensure the copy has no factors at this point
        self.assertEqual(len(copy.get_factors()), 0)

        # Add factors to the original graph
        phi1 = DiscreteFactor(['a', 'b'], [2, 2], [[0.3, 0.7], [0.9, 0.1]])
        self.graph.add_factors(phi1)

        # The factors should not get copied over
        with self.assertRaises(AssertionError):
            self.assertListEqual(copy.get_factors(), self.graph.get_factors())

        # Create a fresh copy
        del copy
        copy = self.graph.copy()
        self.assertListEqual(copy.get_factors(), self.graph.get_factors())

        # If we change factors in the original, it should not be passed to the clone
        phi1.values = np.array([[0.5, 0.5], [0.5, 0.5]])
        self.assertNotEqual(self.graph.get_factors(), copy.get_factors())

        # Start with a fresh copy
        del copy
        self.graph.add_nodes_from(['d'])
        copy = self.graph.copy()

        # Ensure an unconnected node gets copied over as well
        self.assertEqual(len(copy.nodes()), 4)
        self.assertListEqual(self.graph.neighbors('a'), ['b'])
        self.assertTrue('a' in self.graph.neighbors('b'))
        self.assertTrue('c' in self.graph.neighbors('b'))
        self.assertListEqual(self.graph.neighbors('c'), ['b'])
        self.assertListEqual(self.graph.neighbors('d'), [])

        # Verify that changing the copied model should not update the original
        copy.add_nodes_from(['e'])
        self.assertListEqual(copy.neighbors('e'), [])
        with self.assertRaises(nx.NetworkXError):
            self.graph.neighbors('e')

        # Verify that changing edges in the copy doesn't create edges in the original
        copy.add_edges_from([('d', 'b')])

        self.assertTrue('a' in copy.neighbors('b'))
        self.assertTrue('c' in copy.neighbors('b'))
        self.assertTrue('d' in copy.neighbors('b'))

        self.assertTrue('a' in self.graph.neighbors('b'))
        self.assertTrue('c' in self.graph.neighbors('b'))
        self.assertFalse('d' in self.graph.neighbors('b'))

        # If we remove factors from the copied model, it should not reflect in the original
        copy.remove_factors(phi1)
        self.assertEqual(len(self.graph.get_factors()), 1)
        self.assertEqual(len(copy.get_factors()), 0)

    def tearDown(self):
        del self.graph
开发者ID:MariosRichards,项目名称:BES_analysis_code,代码行数:104,代码来源:test_MarkovModel.py


注:本文中的pgmpy.models.MarkovModel.get_factors方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。