本文整理汇总了Python中pgmpy.models.MarkovModel.get_factors方法的典型用法代码示例。如果您正苦于以下问题:Python MarkovModel.get_factors方法的具体用法?Python MarkovModel.get_factors怎么用?Python MarkovModel.get_factors使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pgmpy.models.MarkovModel
的用法示例。
在下文中一共展示了MarkovModel.get_factors方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TestUndirectedGraphFactorOperations
# 需要导入模块: from pgmpy.models import MarkovModel [as 别名]
# 或者: from pgmpy.models.MarkovModel import get_factors [as 别名]
class TestUndirectedGraphFactorOperations(unittest.TestCase):
def setUp(self):
self.graph = MarkovModel()
def test_add_factor_raises_error(self):
self.graph.add_edges_from([('Alice', 'Bob'), ('Bob', 'Charles'),
('Charles', 'Debbie'), ('Debbie', 'Alice')])
factor = Factor(['Alice', 'Bob', 'John'], [2, 2, 2], np.random.rand(8))
self.assertRaises(ValueError, self.graph.add_factors, factor)
def test_add_single_factor(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi = Factor(['a', 'b'], [2, 2], range(4))
self.graph.add_factors(phi)
self.assertListEqual(self.graph.get_factors(), [phi])
def test_add_multiple_factors(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
self.assertListEqual(self.graph.get_factors(), [phi1, phi2])
def test_remove_single_factor(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
self.graph.remove_factors(phi1)
self.assertListEqual(self.graph.get_factors(), [phi2])
def test_remove_multiple_factors(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
self.graph.remove_factors(phi1, phi2)
self.assertListEqual(self.graph.get_factors(), [])
def test_partition_function(self):
self.graph.add_nodes_from(['a', 'b', 'c'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
self.graph.add_edges_from([('a', 'b'), ('b', 'c')])
self.assertEqual(self.graph.get_partition_function(), 22.0)
def test_partition_function_raises_error(self):
self.graph.add_nodes_from(['a', 'b', 'c', 'd'])
phi1 = Factor(['a', 'b'], [2, 2], range(4))
phi2 = Factor(['b', 'c'], [2, 2], range(4))
self.graph.add_factors(phi1, phi2)
self.assertRaises(ValueError,
self.graph.get_partition_function)
def tearDown(self):
del self.graph
示例2: MarkovModel
# 需要导入模块: from pgmpy.models import MarkovModel [as 别名]
# 或者: from pgmpy.models.MarkovModel import get_factors [as 别名]
import numpy as np
import pandas as pd
from pgmpy.models import MarkovModel
from pgmpy.estimators import MaximumLikelihoodEstimator
# Generating random data
raw_data = np.random.randint(low=0, high=2, size=(1000, 2))
data = pd.DataFrame(raw_data, columns=['X', 'Y'])
model = MarkovModel()
model.fit(data, estimator=MaximumLikelihoodEstimator)
model.get_factors()
model.nodes()
model.edges()
示例3: TestUndirectedGraphTriangulation
# 需要导入模块: from pgmpy.models import MarkovModel [as 别名]
# 或者: from pgmpy.models.MarkovModel import get_factors [as 别名]
#.........这里部分代码省略.........
[['a', 'b'], ['a', 'd'], ['b', 'c'],
['b', 'd'], ['c', 'd']])
def test_triangulation_h6_create_new(self):
self.graph.add_edges_from([('a', 'b'), ('b', 'c'), ('c', 'd'),
('d', 'a')])
phi1 = DiscreteFactor(['a', 'b'], [2, 3], np.random.rand(6))
phi2 = DiscreteFactor(['b', 'c'], [3, 4], np.random.rand(12))
phi3 = DiscreteFactor(['c', 'd'], [4, 5], np.random.rand(20))
phi4 = DiscreteFactor(['d', 'a'], [5, 2], np.random.random(10))
self.graph.add_factors(phi1, phi2, phi3, phi4)
H = self.graph.triangulate(heuristic='H6', inplace=True)
self.assertListEqual(hf.recursive_sorted(H.edges()),
[['a', 'b'], ['a', 'd'], ['b', 'c'],
['b', 'd'], ['c', 'd']])
def test_copy(self):
# Setup the original graph
self.graph.add_nodes_from(['a', 'b'])
self.graph.add_edges_from([('a', 'b')])
# Generate the copy
copy = self.graph.copy()
# Ensure the copied model is correct
self.assertTrue(copy.check_model())
# Basic sanity checks to ensure the graph was copied correctly
self.assertEqual(len(copy.nodes()), 2)
self.assertListEqual(copy.neighbors('a'), ['b'])
self.assertListEqual(copy.neighbors('b'), ['a'])
# Modify the original graph ...
self.graph.add_nodes_from(['c'])
self.graph.add_edges_from([('c', 'b')])
# ... and ensure none of those changes get propagated
self.assertEqual(len(copy.nodes()), 2)
self.assertListEqual(copy.neighbors('a'), ['b'])
self.assertListEqual(copy.neighbors('b'), ['a'])
with self.assertRaises(nx.NetworkXError):
copy.neighbors('c')
# Ensure the copy has no factors at this point
self.assertEqual(len(copy.get_factors()), 0)
# Add factors to the original graph
phi1 = DiscreteFactor(['a', 'b'], [2, 2], [[0.3, 0.7], [0.9, 0.1]])
self.graph.add_factors(phi1)
# The factors should not get copied over
with self.assertRaises(AssertionError):
self.assertListEqual(copy.get_factors(), self.graph.get_factors())
# Create a fresh copy
del copy
copy = self.graph.copy()
self.assertListEqual(copy.get_factors(), self.graph.get_factors())
# If we change factors in the original, it should not be passed to the clone
phi1.values = np.array([[0.5, 0.5], [0.5, 0.5]])
self.assertNotEqual(self.graph.get_factors(), copy.get_factors())
# Start with a fresh copy
del copy
self.graph.add_nodes_from(['d'])
copy = self.graph.copy()
# Ensure an unconnected node gets copied over as well
self.assertEqual(len(copy.nodes()), 4)
self.assertListEqual(self.graph.neighbors('a'), ['b'])
self.assertTrue('a' in self.graph.neighbors('b'))
self.assertTrue('c' in self.graph.neighbors('b'))
self.assertListEqual(self.graph.neighbors('c'), ['b'])
self.assertListEqual(self.graph.neighbors('d'), [])
# Verify that changing the copied model should not update the original
copy.add_nodes_from(['e'])
self.assertListEqual(copy.neighbors('e'), [])
with self.assertRaises(nx.NetworkXError):
self.graph.neighbors('e')
# Verify that changing edges in the copy doesn't create edges in the original
copy.add_edges_from([('d', 'b')])
self.assertTrue('a' in copy.neighbors('b'))
self.assertTrue('c' in copy.neighbors('b'))
self.assertTrue('d' in copy.neighbors('b'))
self.assertTrue('a' in self.graph.neighbors('b'))
self.assertTrue('c' in self.graph.neighbors('b'))
self.assertFalse('d' in self.graph.neighbors('b'))
# If we remove factors from the copied model, it should not reflect in the original
copy.remove_factors(phi1)
self.assertEqual(len(self.graph.get_factors()), 1)
self.assertEqual(len(copy.get_factors()), 0)
def tearDown(self):
del self.graph