当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNet.print_test方法代码示例

本文整理汇总了Python中neuralnet.NeuralNet.print_test方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet.print_test方法的具体用法?Python NeuralNet.print_test怎么用?Python NeuralNet.print_test使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在neuralnet.NeuralNet的用法示例。


在下文中一共展示了NeuralNet.print_test方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: scaled_conjugate_gradient

# 需要导入模块: from neuralnet import NeuralNet [as 别名]
# 或者: from neuralnet.NeuralNet import print_test [as 别名]
        network,
        training_one, 
        method = "Newton-CG",
        ERROR_LIMIT = 1e-4
    )

# Train the network using Scaled Conjugate Gradient
scaled_conjugate_gradient(
        network,
        training_one, 
        ERROR_LIMIT = 1e-4
    )

# Train the network using resilient backpropagation
resilient_backpropagation(
        network,
        training_one,          # specify the training set
        ERROR_LIMIT     = 1e-3, # define an acceptable error limit
        #max_iterations = (),   # continues until the error limit is reach if this argument is skipped
        
        # optional parameters
        weight_step_max = 50., 
        weight_step_min = 0., 
        start_step = 0.5, 
        learn_max = 1.2, 
        learn_min = 0.5
    )


network.print_test( training_one )
开发者ID:CS308-2016,项目名称:BinC,代码行数:32,代码来源:main.py

示例2: scaled_conjugate_gradient

# 需要导入模块: from neuralnet import NeuralNet [as 别名]
# 或者: from neuralnet.NeuralNet import print_test [as 别名]
        network,
        training_one, 
        method = "Newton-CG",
        ERROR_LIMIT = 1e-4
    )

# Train the network using Scaled Conjugate Gradient
scaled_conjugate_gradient(
        network,
        training_one, 
        ERROR_LIMIT = 1e-4
    )

# Train the network using resilient backpropagation
resilient_backpropagation(
        network,
        training_one,          # specify the training set
        ERROR_LIMIT     = 1e-3, # define an acceptable error limit
        #max_iterations = (),   # continues until the error limit is reach if this argument is skipped
        
        # optional parameters
        weight_step_max = 50., 
        weight_step_min = 0., 
        start_step = 0.5, 
        learn_max = 1.2, 
        learn_min = 0.5
    )


network.print_test( lst)
开发者ID:amangour30,项目名称:BINC,代码行数:32,代码来源:main.py


注:本文中的neuralnet.NeuralNet.print_test方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。