当前位置: 首页>>代码示例>>Python>>正文


Python NeuralNet.excite方法代码示例

本文整理汇总了Python中neuralnet.NeuralNet.excite方法的典型用法代码示例。如果您正苦于以下问题:Python NeuralNet.excite方法的具体用法?Python NeuralNet.excite怎么用?Python NeuralNet.excite使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在neuralnet.NeuralNet的用法示例。


在下文中一共展示了NeuralNet.excite方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: MineSweeper

# 需要导入模块: from neuralnet import NeuralNet [as 别名]
# 或者: from neuralnet.NeuralNet import excite [as 别名]
class MineSweeper(object):
    '''
    The minesweeper class.
    '''
    def __init__(self):
        self.brain = NeuralNet(settings.NUM_INPUTS,
                               settings.NUM_OUTPUTS,
                               settings.NUM_HIDDEN,
                               settings.NEURONS_PER_HIDDEN)
        
        self.position = Vector2D(random() * settings.WINDOW_WIDTH, 
                                 random() * settings.WINDOW_HEIGHT)
        
        self.look_at = Vector2D()
        self.rotation = random() * 2 * math.pi
        self.ltrack = 0.16
        self.rtrack = 0.16
        self.fitness = 0.0
        self.scale = settings.SWEEPER_SCALE
        self.closest_mine = 0
        self.speed = 0.0
    
    def reset(self):
        self.position = Vector2D(random() * settings.WINDOW_WIDTH, 
                                 random() * settings.WINDOW_HEIGHT)
        
        self.fitness = 0.0
        self.rotation = random() * 2 * math.pi
    
    def get_closest_mine(self, all_mines):
        '''
        finds and returns a Vector2D that is the position of the mine closest to
        this minesweeper. Expects an iterable of `Mine`s as the parameter
        `all_mines`.
        '''
        closest_so_far = INFINITY
        closest_object = Vector2D(0, 0)
        ctr = 0
        for mine in all_mines:
            l = (mine.position - self.position).length()
            if l < closest_so_far:
                closest_so_far = l
                closest_object = self.position - mine.position
                self.closest_mine = ctr
            
            ctr += 1
            
        return closest_object
     
    def update(self, all_mines):
        '''
        This is the real brains function. Takes an iterable of mines. It first
        takes sensor readings and feed these to the ANN of our minesweeper.
        The inputs are:
            1) A vector (Vector2D) to the closest mine,
            2) The "look at" vector (also a Vector2D).
        
        The brain(ANN) returns 2 outputs, ltrack and rtrack - which are forces
        applied on left and right tracks, respectively. Depending on these, the
        acceleration and/or the rotation is calculated and the position vector
        is updated accordingly.
        '''
        # Inputs to the brain.
        inputs = []
        # First input: vector to the closest mine.
        closest_mine = self.get_closest_mine(all_mines)
        closest_mine.normalize()
        # Place the inputs on the input list
        inputs.append(closest_mine.x)
        inputs.append(closest_mine.y)
        inputs.append(self.look_at.x)
        inputs.append(self.look_at.y)
        # Now, excite the brain and get the feedback
        output = self.brain.excite(inputs, settings.BIAS, filter_sigmoid=True)
        # Make sure we get back the expected number of outputs
        if len(output) != settings.NUM_OUTPUTS:
            raise Exception( 'An error occurred: The number of outputs from '
                            +'the ANN is not what was expected.')
        
        self.ltrack, self.rtrack = output
        
        rot_force = self.ltrack - self.rtrack
        rot_force = clamp(rot_force, 
                          -settings.MAX_TURN_RATE, 
                          settings.MAX_TURN_RATE)
        # New rotation and speed:
        self.rotation += rot_force
        self.speed = self.ltrack + self.rtrack
        # Get the new look at:
        self.look_at.x = -math.sin(self.rotation)
        self.look_at.y = math.cos(self.rotation)
        # Get the new position:
        self.position += (self.look_at * self.speed)
        # Wrap around the screen
        if self.position.x > settings.WINDOW_WIDTH:
            self.position.x = 0
        
        if self.position.x < 0:
            self.position.x = settings.WINDOW_WIDTH
            
#.........这里部分代码省略.........
开发者ID:Hydex,项目名称:SmartSweepers,代码行数:103,代码来源:minesweeper.py


注:本文中的neuralnet.NeuralNet.excite方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。