当前位置: 首页>>代码示例>>Python>>正文


Python Dataset.get_mapped方法代码示例

本文整理汇总了Python中mvpa2.datasets.base.Dataset.get_mapped方法的典型用法代码示例。如果您正苦于以下问题:Python Dataset.get_mapped方法的具体用法?Python Dataset.get_mapped怎么用?Python Dataset.get_mapped使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mvpa2.datasets.base.Dataset的用法示例。


在下文中一共展示了Dataset.get_mapped方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_featuregroup_mapper

# 需要导入模块: from mvpa2.datasets.base import Dataset [as 别名]
# 或者: from mvpa2.datasets.base.Dataset import get_mapped [as 别名]
def test_featuregroup_mapper():
    ds = Dataset(np.arange(24).reshape(3,8))
    ds.fa['roi'] = [0, 1] * 4
    # just to check
    ds.sa['chunks'] = np.arange(3)

    # correct results
    csamples = [[3, 4], [11, 12], [19, 20]]
    croi = [0, 1]
    cchunks = np.arange(3)

    m = mean_group_feature(['roi'])
    mds = m.forward(ds)
    assert_equal(mds.shape, (3, 2))
    assert_array_equal(mds.samples, csamples)
    assert_array_equal(mds.fa.roi, np.unique([0, 1] * 4))
    # FAs should simply remain the same
    assert_array_equal(mds.sa.chunks, np.arange(3))

    # now without grouping
    m = mean_feature()
    # forwarding just the samples should yield the same result
    assert_array_equal(m.forward(ds.samples),
                       m.forward(ds).samples)

    # And when operating on a dataset with >1D samples, then operate
    # only across "features", i.e. 1st dimension
    ds = Dataset(np.arange(24).reshape(3,2,2,2))
    mapped = ds.get_mapped(m)
    assert_array_equal(m.forward(ds.samples),
                       mapped.samples)
    assert_array_equal(mapped.samples.shape, (3, 2, 2))
    assert_array_equal(mapped.samples, np.mean(ds.samples, axis=1))
    # and still could map back? ;) not ATM, so just to ensure consistency
    assert_raises(NotImplementedError,
                  mapped.a.mapper.reverse, mapped.samples)
    # but it should also work with standard 2d sample arrays
    ds = Dataset(np.arange(24).reshape(3,8))
    mapped = ds.get_mapped(m)
    assert_array_equal(mapped.samples.shape, (3, 1))
开发者ID:schoeke,项目名称:PyMVPA,代码行数:42,代码来源:test_fxmapper.py

示例2: fmri_dataset

# 需要导入模块: from mvpa2.datasets.base import Dataset [as 别名]
# 或者: from mvpa2.datasets.base.Dataset import get_mapped [as 别名]
def fmri_dataset(samples, targets=None, chunks=None, mask=None,
                 sprefix='voxel', tprefix='time', add_fa=None,):
    """Create a dataset from an fMRI timeseries image.

    The timeseries image serves as the samples data, with each volume becoming
    a sample. All 3D volume samples are flattened into one-dimensional feature
    vectors, optionally being masked (i.e. subset of voxels corresponding to
    non-zero elements in a mask image).

    In addition to (optional) samples attributes for targets and chunks the
    returned dataset contains a number of additional attributes:

    Samples attributes (per each volume):

      * volume index (time_indices)
      * volume acquisition time (time_coord)

    Feature attributes (per each voxel):

      * voxel indices (voxel_indices), sometimes referred to as ijk

    Dataset attributes:

      * dump of the image (e.g. NIfTI) header data (imghdr)
      * class of the image (e.g. Nifti1Image) (imgtype)
      * volume extent (voxel_dim)
      * voxel extent (voxel_eldim)

    The default attribute name is listed in parenthesis, but may be altered by
    the corresponding prefix arguments. The validity of the attribute values
    relies on correct settings in the NIfTI image header.

    Parameters
    ----------
    samples : str or NiftiImage or list
      fMRI timeseries, specified either as a filename (single file 4D image),
      an image instance (4D image), or a list of filenames or image instances
      (each list item corresponding to a 3D volume).
    targets : scalar or sequence
      Label attribute for each volume in the timeseries, or a scalar value that
      is assigned to all samples.
    chunks : scalar or sequence
      Chunk attribute for each volume in the timeseries, or a scalar value that
      is assigned to all samples.
    mask : str or NiftiImage
      Filename or image instance of a 3D volume mask. Voxels corresponding to
      non-zero elements in the mask will be selected. The mask has to be in the
      same space (orientation and dimensions) as the timeseries image
    sprefix : str or None
      Prefix for attribute names describing spatial properties of the
      timeseries. If None, no such attributes are stored in the dataset.
    tprefix : str or None
      Prefix for attribute names describing temporal properties of the
      timeseries. If None, no such attributes are stored in the dataset.
    add_fa : dict or None
      Optional dictionary with additional volumetric data that shall be stored
      as feature attributes in the dataset. The dictionary key serves as the
      feature attribute name. Each value might be of any type supported by the
      'mask' argument of this function.

    Returns
    -------
    Dataset
    """
    # load the samples
    imgdata, imghdr, img = _load_anyimg(samples, ensure=True, enforce_dim=4)

    # figure out what the mask is, but only handle known cases, the rest
    # goes directly into the mapper which maybe knows more
    maskimg = _load_anyimg(mask)
    if maskimg is None:
        pass
    else:
        # take just data and ignore the header
        mask = maskimg[0]

    # compile the samples attributes
    sa = {}
    if not targets is None:
        sa['targets'] = _expand_attribute(targets, imgdata.shape[0], 'targets')
    if not chunks is None:
        sa['chunks'] = _expand_attribute(chunks, imgdata.shape[0], 'chunks')

    # create a dataset
    ds = Dataset(imgdata, sa=sa)
    if sprefix is None:
        space = None
    else:
        space = sprefix + '_indices'
    ds = ds.get_mapped(FlattenMapper(shape=imgdata.shape[1:], space=space))

    # now apply the mask if any
    if not mask is None:
        flatmask = ds.a.mapper.forward1(mask)
        # direct slicing is possible, and it is potentially more efficient,
        # so let's use it
        #mapper = StaticFeatureSelection(flatmask)
        #ds = ds.get_mapped(StaticFeatureSelection(flatmask))
        ds = ds[:, flatmask != 0]

#.........这里部分代码省略.........
开发者ID:JohnGriffiths,项目名称:nidata,代码行数:103,代码来源:mri.py

示例3: eeglab_dataset

# 需要导入模块: from mvpa2.datasets.base import Dataset [as 别名]
# 或者: from mvpa2.datasets.base.Dataset import get_mapped [as 别名]
def eeglab_dataset(samples):
    '''Make a Dataset instance from EEGLAB input data

    Parameters
    ----------
    samples: str
        Filename of EEGLAB text file

    Returns
    -------
    ds: mvpa2.base.dataset.Dataset
        Dataset with the contents of the input file
    '''
    if not isinstance(samples, basestring):
        raise ValueError("Samples should be a string")

    if _looks_like_filename(samples):
        if not os.path.exists(samples):
            raise ValueError("Input looks like a filename, but file"
                                " %s does not exist" % samples)
        with open(samples) as f:
            samples = f.read()

    lines = samples.split('\n')
    samples = []
    cur_sample = None

    for i, line in enumerate(lines):
        if not line:
            continue
        if i == 0:
            # first line contains the channel names
            channel_labels = line.split()
            n_channels = len(channel_labels)
        else:
            # first value is the time point, the remainders the value 
            # for each channel
            values = map(float, line.split())
            t = values[0]  # time 
            eeg = values[1:] # values for each electrode

            if len(eeg) != n_channels:
                raise ValueError("Line %d: expected %d values but found %d" %
                                    (n_channels, len(eeg)))

            if cur_sample is None or t < prev_t:
                # new sample
                cur_sample = []
                samples.append(cur_sample)

            cur_sample.append((t, eeg))
            prev_t = t

    # get and verify number of elements in each dimension
    n_samples = len(samples)
    n_timepoints_all = map(len, samples)

    n_timepoints_unique = set(n_timepoints_all)
    if len(n_timepoints_unique) != 1:
        raise ValueError("Different number of time points in different"
                            "samples: found %d different lengths" %
                            len(n_timepoints_unique))

    n_timepoints = n_timepoints_all[0]

    shape = (n_samples, n_timepoints, n_channels)

    # allocate space for data
    data = np.zeros(shape)

    # make a list of all channels and timepoints
    channel_array = np.asarray(channel_labels)
    timepoint_array = np.asarray([samples[0][i][0]
                                  for i in xrange(n_timepoints)])

    dts = timepoint_array[1:] - timepoint_array[:-1]
    if not np.all(dts == dts[0]):
        raise ValueError("Delta time points are different")

    # put the values in the data array
    for i, sample in enumerate(samples):
        for j, (t, values) in enumerate(sample):
            # check that the time is the same
            if i > 0 and timepoint_array[j] != t:
                raise ValueError("Sample %d, time point %s is different "
                                 "than the first sample (%s)" %
                                 (i, t, timepoint_array[j]))

            for k, value in enumerate(values):
                data[i, j, k] = value

    samples = None # and let gc do it's job

    # make a Dataset instance with the data
    ds = Dataset(data)

    # append a flatten_mapper to go from 3D (sample X time X channel)
    # to 2D (sample X (time X channel))
    flatten_mapper = FlattenMapper(shape=shape[1:], space='time_channel_indices')
    ds = ds.get_mapped(flatten_mapper)
#.........这里部分代码省略.........
开发者ID:andreirusu,项目名称:PyMVPA,代码行数:103,代码来源:eeglab.py

示例4: simple_sim1

# 需要导入模块: from mvpa2.datasets.base import Dataset [as 别名]
# 或者: from mvpa2.datasets.base.Dataset import get_mapped [as 别名]

#.........这里部分代码省略.........
    # fisher
    dissims = np.arctanh(dissims)

    # generate target clean "picture"
    d = np.asanyarray(dissims[0])
    signal_clean = np.zeros(shape + (len(vector_form(d)),))

    # generate ground truth for clustering
    cluster_truth = np.zeros(shape, dtype='int')

    if rois_arrangement == 'circle':
        radius = min(shape[:2])/4.
        center = np.array((radius*2,) * len(shape)).astype(int)
        # arrange at quarter distance from center
        for i, dissim in enumerate(dissims):
            dissim = vector_form(dissim)
            # that is kinda boring -- the same dissimilarity to each
            # voxel???
            #
            # TODO: come up with a better arrangement/idea, e.g. to
            # generate an MVPA pattern which would satisfy the
            # dissimilarity (not exactly but at least close).  That
            # would make more sense
            roi_center = center.copy()
            roi_center[0] += int(radius * np.cos(2*np.pi*i/ndissims))
            roi_center[1] += int(radius * np.sin(2*np.pi*i/ndissims))
            for coords in roi_neighborhood(roi_center):
                acoords = np.asanyarray(coords)
                if np.all(acoords >= [0]*len(coords)) and \
                   np.all(acoords < signal_clean.shape[:len(coords)]):
                    signal_clean.__setitem__(coords, dissim)
                    cluster_truth.__setitem__(coords, i+1)
    else:
        raise ValueError("I know only circle")

    # generated randomly and will be mixed into subjects with different weights
    # TODO: static across runs within subject??  if so -- would be no different
    #       from having RSAs?
    common_noises = get_intrinsic_noises(
        signal_clean.shape,
        std=noise_common_std,
        sigma=noise_common_smooth,
        n=noise_common_n)
    assert common_noises[0].ndim == 3, "There should be no time comp"

    # Now lets generate per subject and per run data by adding some noise(s)
    # all_signals = []
    dss = []
    for isubject in xrange(nsubjects):
        # Interesting noise, simulating some underlying process which has nothing
        # to do with original design/similarity but having spatial structure which
        # repeats through runs with random weights (consider it to be a principal component)

        # generated randomly for each subject separately, but they should have
        # common structure across runs
        subj_specific_noises = get_intrinsic_noises(signal_clean.shape,
                                                std=noise_subject_std,
                                                sigma=noise_subject_smooth,
                                                n=noise_subject_n)
        assert subj_specific_noises[0].ndim == 3, "There should be no time comp"
        # subject_signals = []
        dss_subject = []
        subj_common_noises = [noise * np.random.normal()
                              for noise in common_noises]

        subj_specific_mixins = generate_mixins(nruns)
        subj_common_mixins = generate_mixins(nruns)

        for run in range(nruns):
            signal_run = signal_clean.copy()
            for noise in subj_specific_noises:
                signal_run += noise * subj_specific_mixins[run]
            for noise in subj_common_noises:
                signal_run += noise * subj_common_mixins[run]
            # generic noise -- no common structure across subjects/runs
            signal_run += filter_each_2d(
                np.random.normal(size=signal_clean.shape)*noise_independent_std,
                noise_independent_smooth)

            # go back to correlations with inverse of fisher
            signal_run = np.tanh(signal_run)
            # rollaxis to bring similarities into leading dimension
            ds = Dataset(np.rollaxis(signal_run, 2, 0))
            ds.sa['chunks'] = [run]
            ds.sa['dissimilarity'] = np.arange(len(dissim))  # Lame one for now
            ds_flat = ds.get_mapped(FlattenMapper(shape=ds.shape[1:],
                                                  space='pixel_indices'))
            dss_subject.append(ds_flat)
            #subject_signals.append(signal_run)
        #all_signals.append(subject_signals)
        ds = dsvstack(dss_subject)
        ds.a['mapper'] = dss_subject[0].a.mapper   # .a are not transferred by vstack
        dss.append(ds)

    # Instrumental noise -- the most banal
    assert(len(dss) == nsubjects)
    assert(len(dss) == nsubjects)
    assert(len(dss[0]) == nruns*len(dissim))

    return np.tanh(signal_clean), cluster_truth, dss
开发者ID:mvdoc,项目名称:reprclust,代码行数:104,代码来源:sim.py


注:本文中的mvpa2.datasets.base.Dataset.get_mapped方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。