当前位置: 首页>>代码示例>>Python>>正文


Python Dataset.fa['node_indices']方法代码示例

本文整理汇总了Python中mvpa2.datasets.base.Dataset.fa['node_indices']方法的典型用法代码示例。如果您正苦于以下问题:Python Dataset.fa['node_indices']方法的具体用法?Python Dataset.fa['node_indices']怎么用?Python Dataset.fa['node_indices']使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在mvpa2.datasets.base.Dataset的用法示例。


在下文中一共展示了Dataset.fa['node_indices']方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _get_test_dataset

# 需要导入模块: from mvpa2.datasets.base import Dataset [as 别名]
# 或者: from mvpa2.datasets.base.Dataset import fa['node_indices'] [as 别名]
def _get_test_dataset(include_nodes=True):
    # returns test dataset matching the contents of _get_test_sample_node_data
    samples, nodes, _ = _get_test_sample_node_data()
    ds = Dataset(np.asarray(samples))

    if include_nodes:
        ds.fa['node_indices'] = np.asarray(nodes)

    nsamples = ds.nsamples
    ds.sa['intents'] = ['NIFTI_INTENT_NONE'] * nsamples

    return ds
开发者ID:Anhmike,项目名称:PyMVPA,代码行数:14,代码来源:test_giftidataset.py

示例2: test_niml_dset_stack

# 需要导入模块: from mvpa2.datasets.base import Dataset [as 别名]
# 或者: from mvpa2.datasets.base.Dataset import fa['node_indices'] [as 别名]
    def test_niml_dset_stack(self):
        values = map(lambda x:np.random.normal(size=x), [(10, 3), (10, 4), (10, 5)])
        indices = [[0, 1, 2], [3, 2, 1, 0], None]

        dsets = []
        for v, i in zip(values, indices):
            dset = Dataset(v)
            if not i is None:
                dset.fa['node_indices'] = i
            dsets.append(dset)


        dset = niml.hstack(dsets)
        assert_equal(dset.nfeatures, 12)
        assert_equal(dset.nsamples, 10)
        indices = np.asarray([ 0, 1, 2, 6, 5, 4, 3, 7, 8, 9, 10, 11])
        assert_array_equal(dset.fa['node_indices'], indices)

        dset = niml.hstack(dsets, 10)
        dset = niml.hstack(dsets, 10) # twice to ensure not overwriting
        assert_equal(dset.nfeatures, 30)
        indices = np.asarray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                              13, 12, 11, 10, 14, 15, 16, 17, 18, 19,
                              20, 21, 22, 23, 24, 25, 26, 27, 28, 29])
        assert_array_equal(dset.fa['node_indices'], indices)

        assert_true(np.all(dset[:, 4].samples == 0))
        assert_array_equal(dset[:, 10:14].samples, dsets[1].samples)

        # If not enough space it should raise an error
        stacker = (lambda x: niml.hstack(dsets, x))
        assert_raises(ValueError, stacker, 2)

        # If sparse then with no padding it should fail
        dsets[0].fa.node_indices[0] = 3
        assert_raises(ValueError, stacker, None)

        # Using an illegal node index should raise an error
        dsets[1].fa.node_indices[0] = 666
        assert_raises(ValueError, stacker, 10)
开发者ID:StevenLOL,项目名称:PyMVPA,代码行数:42,代码来源:test_surfing_afni.py

示例3: get_testdata

# 需要导入模块: from mvpa2.datasets.base import Dataset [as 别名]
# 或者: from mvpa2.datasets.base.Dataset import fa['node_indices'] [as 别名]
    def get_testdata(self):
        # rs = np.random.RandomState(0)
        rs = np.random.RandomState()
        nt = 200
        n_triangles = 4
        ns = 10
        nv = n_triangles * 3
        vertices = np.zeros((nv, 3))  # 4 separated triangles
        faces = []
        for i in range(n_triangles):
            vertices[i*3] = [i*2, 0, 0]
            vertices[i*3+1] = [i*2+1, 1/np.sqrt(3), 0]
            vertices[i*3+2] = [i*2+1, -1/np.sqrt(3), 0]
            faces.append([i*3, i*3+1, i*3+2])
        faces = np.array(faces)
        surface = Surface(vertices, faces)

        ds_orig = np.zeros((nt, nv))
        # add coarse-scale information
        for i in range(n_triangles):
            ds_orig[:, i*3:(i+1)*3] += rs.normal(size=(nt, 1))
        # add fine-scale information
        ds_orig += rs.normal(size=(nt, nv))
        dss_train, dss_test = [], []
        for i in range(ns):
            ds = np.zeros_like(ds_orig)
            for j in range(n_triangles):
                ds[:, j*3:(j+1)*3] = np.dot(ds_orig[:, j*3:(j+1)*3],
                                            get_random_rotation(3))
                                            # special_ortho_group.rvs(3, random_state=rs))
            ds = Dataset(ds)
            ds.fa['node_indices'] = np.arange(nv)
            ds_train, ds_test = ds[:nt//2, :], ds[nt//2:, :]
            zscore(ds_train, chunks_attr=None)
            zscore(ds_test, chunks_attr=None)
            dss_train.append(ds_train)
            dss_test.append(ds_test)
        return dss_train, dss_test, surface
开发者ID:PyMVPA,项目名称:PyMVPA,代码行数:40,代码来源:test_connectivity_hyperalignment.py


注:本文中的mvpa2.datasets.base.Dataset.fa['node_indices']方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。