当前位置: 首页>>代码示例>>Python>>正文


Python MarkovStateModel.n_states_方法代码示例

本文整理汇总了Python中msmbuilder.msm.MarkovStateModel.n_states_方法的典型用法代码示例。如果您正苦于以下问题:Python MarkovStateModel.n_states_方法的具体用法?Python MarkovStateModel.n_states_怎么用?Python MarkovStateModel.n_states_使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在msmbuilder.msm.MarkovStateModel的用法示例。


在下文中一共展示了MarkovStateModel.n_states_方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: post

# 需要导入模块: from msmbuilder.msm import MarkovStateModel [as 别名]
# 或者: from msmbuilder.msm.MarkovStateModel import n_states_ [as 别名]
 def post(self):
     io = StringIO(self.get_argument('matrix'))
     w = sio.mmread(io)
     msm = MarkovStateModel()
     msm.transmat_, msm.populations_ = _transmat_mle_prinz(w)
     msm.n_states_ = msm.populations_.shape[0]
     if bool(int(self.get_argument('mode'))):
         self.write(make_json_paths(msm, self))  # TP
     else:
         self.write(make_json_graph(msm, self))  # MSM
开发者ID:msmexplorer,项目名称:msmexplorer-d3,代码行数:12,代码来源:app.py

示例2: test_hubscore

# 需要导入模块: from msmbuilder.msm import MarkovStateModel [as 别名]
# 或者: from msmbuilder.msm.MarkovStateModel import n_states_ [as 别名]
def test_hubscore():
    # Make an actual hub!

    tprob = np.array([[0.8, 0.0, 0.2, 0.0, 0.0],
                      [0.0, 0.8, 0.2, 0.0, 0.0],
                      [0.1, 0.1, 0.6, 0.1, 0.1],
                      [0.0, 0.0, 0.2, 0.8, 0.0],
                      [0.0, 0.0, 0.2, 0.0, 0.8]])

    msm = MarkovStateModel(lag_time=1)
    msm.transmat_ = tprob
    msm.n_states_ = 5

    score = tpt.hub_scores(msm, 2)[0]

    assert score == 1.0
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:18,代码来源:test_tpt.py

示例3: test_2

# 需要导入模块: from msmbuilder.msm import MarkovStateModel [as 别名]
# 或者: from msmbuilder.msm.MarkovStateModel import n_states_ [as 别名]
def test_2():
    model = MarkovStateModel(verbose=False)
    C = np.array([
        [4380, 153,  15,   2,    0,    0],
        [211,  4788, 1,    0,    0,    0],
        [169,  1,    4604, 226,  0,    0],
        [3,    13,   158,  4823, 3,    0],
        [0,    0,    0,    4,    4978, 18],
        [7,    5,    0,    0,    62,   4926]], dtype=float)
    C = C + 1.0 / 6.0
    model.n_states_ = C.shape[0]
    model.countsmat_ = C
    model.transmat_, model.populations_ = model._fit_mle(C)

    n_trials = 5000
    random = np.random.RandomState(0)
    all_timescales = np.zeros((n_trials, model.n_states_ - 1))
    all_eigenvalues = np.zeros((n_trials, model.n_states_))
    for i in range(n_trials):
        T = np.vstack([random.dirichlet(C[i]) for i in range(C.shape[0])])
        u = _solve_msm_eigensystem(T, k=6)[0]
        all_eigenvalues[i] = u
        all_timescales[i] = -1 / np.log(u[1:])

    pp.figure(figsize=(12, 8))
    for i in range(3):
        pp.subplot(2,3,i+1)
        pp.title('Timescale %d' % i)
        kde = scipy.stats.gaussian_kde(all_timescales[:, i])
        xx = np.linspace(all_timescales[:,i].min(), all_timescales[:,i].max())
        r = scipy.stats.norm(loc=model.timescales_[i], scale=model.uncertainty_timescales()[i])
        pp.plot(xx, kde.evaluate(xx), c='r', label='Samples')
        pp.plot(xx, r.pdf(xx), c='b', label='Analytic')

    for i in range(1, 4):
        pp.subplot(2,3,3+i)
        pp.title('Eigenvalue %d' % i)
        kde = scipy.stats.gaussian_kde(all_eigenvalues[:, i])
        xx = np.linspace(all_eigenvalues[:,i].min(), all_eigenvalues[:,i].max())
        r = scipy.stats.norm(loc=model.eigenvalues_[i], scale=model.uncertainty_eigenvalues()[i])
        pp.plot(xx, kde.evaluate(xx), c='r', label='Samples')
        pp.plot(xx, r.pdf(xx), c='b', label='Analytic')

    pp.tight_layout()
    pp.legend(loc=4)
    pp.savefig('test_msm_uncertainty_plots.png')
开发者ID:back2mars,项目名称:msmbuilder,代码行数:48,代码来源:test_msm_uncertainty.py

示例4: test_mfpt2

# 需要导入模块: from msmbuilder.msm import MarkovStateModel [as 别名]
# 或者: from msmbuilder.msm.MarkovStateModel import n_states_ [as 别名]
def test_mfpt2():
    tprob = np.array([[0.90, 0.10],
                      [0.22, 0.78]])

    pi0 = 1
    pi1 = pi0 * tprob[0, 1] / tprob[1, 0]
    pops = np.array([pi0, pi1]) / (pi0 + pi1)

    msm = MarkovStateModel(lag_time=1)
    msm.transmat_ = tprob
    msm.n_states_ = 2
    msm.populations_ = pops

    mfpts = np.vstack([tpt.mfpts(msm, i) for i in range(2)]).T

    # since it's a 2x2 the mfpt from 0 -> 1 is the
    # same as the escape time of 0
    npt.assert_almost_equal(1 / (1 - tprob[0, 0]), mfpts[0, 1])
    npt.assert_almost_equal(1 / (1 - tprob[1, 1]), mfpts[1, 0])
开发者ID:Eigenstate,项目名称:msmbuilder,代码行数:21,代码来源:test_tpt.py

示例5: test_countsmat

# 需要导入模块: from msmbuilder.msm import MarkovStateModel [as 别名]
# 或者: from msmbuilder.msm.MarkovStateModel import n_states_ [as 别名]
def test_countsmat():
    model = MarkovStateModel(verbose=False)
    C = np.array([
        [4380, 153, 15, 2, 0, 0],
        [211, 4788, 1, 0, 0, 0],
        [169, 1, 4604, 226, 0, 0],
        [3, 13, 158, 4823, 3, 0],
        [0, 0, 0, 4, 4978, 18],
        [7, 5, 0, 0, 62, 4926]], dtype=float)
    C = C + (1.0 / 6.0)
    model.n_states_ = C.shape[0]
    model.countsmat_ = C
    model.transmat_, model.populations_ = model._fit_mle(C)

    n_trials = 5000
    random = np.random.RandomState(0)
    all_timescales = np.zeros((n_trials, model.n_states_ - 1))
    all_eigenvalues = np.zeros((n_trials, model.n_states_))
    for i in range(n_trials):
        T = np.vstack([random.dirichlet(C[i]) for i in range(C.shape[0])])
        u = _solve_msm_eigensystem(T, k=6)[0]
        u = np.real(u)  # quiet warning. Don't know if this is legit
        all_eigenvalues[i] = u
        all_timescales[i] = -1 / np.log(u[1:])
开发者ID:dr-nate,项目名称:msmbuilder,代码行数:26,代码来源:test_msm_uncertainty.py


注:本文中的msmbuilder.msm.MarkovStateModel.n_states_方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。